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Lecture Outline

• Linear regression models
• Formalization and interpretation
• Training and closed form solutions
• Regularization

• Logistic regression models
• Binary classification
• Training and gradient descent

• Towards neural networks 
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Basic Supervised (Linear) Models

Linear Regression Logistic Regression

Learn 𝑦 = 𝑓(𝑥) mapping
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Linear Regression
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Simple Linear Regression Setting
• Given a collection of samples 𝐷 = 𝒙1, 𝑦1 ;  … 𝒙𝑁 , 𝑦𝑁  learn the unknown 

mapping 𝑦 = 𝑓 𝒙 using a model h𝜃

• One or more input/free variables: i.e. 𝒙𝑛 = 𝑥1
𝑛, … , 𝑥𝑘

𝑛, … , 𝑥𝐷
𝑛 ∈ ℝ𝐷

• One output/response variable 𝑦
• The simplest possible h𝜃 for the job (high inductive bias) assumes input and 

output variables to be bound by a linear relationship

ℎ𝜃 → 𝑦 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯ + 𝜃𝐷𝑥𝐷 +  = 

𝑘=1

𝐷

𝜃𝑘𝑥𝑘 + 𝜖

• Model parameters: 𝜽 = 𝜃0, 𝜃1, … , 𝜃𝑘 with bias 𝜃0 (the parameter 
corresponding to an input fixed to 1)

• (The mystical) Error term: 𝜖~𝒩(0, 𝜎2) (a.k.a. Normally distributed with 0 
mean and fixed variance 𝜎2)
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Understanding 
Linear 
Regression

𝑦𝑖

ො𝑦𝑖

𝜖𝑖
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Matching conditions
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Fitting a linear 
regressor without 
considering the 
influence of gender

𝑤𝑒𝑖𝑔ℎ𝑡 ≈ 𝜃 ∗ ℎ𝑒𝑖𝑔ℎ𝑡 + 𝜃0



Matching conditions
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A first approach would 
add gender as a 
dummy variable which 
determines the
intercept of the linear
regression (slope is 
not affected)

𝑤𝑒𝑖𝑔ℎ𝑡 ≈ 𝜃 ∗ ℎ𝑒𝑖𝑔ℎ𝑡 + 𝜃0 ∗ 𝑔𝑒𝑛𝑑𝑒𝑟



Matching conditions
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Make both intercept 
and slope dependent 
on the categorical 
variable describing the 
condition to be 
matched

𝑤𝑒𝑖𝑔ℎ𝑡 ≈ 𝜃 ∗ ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝜃0 ∗ 𝑔𝑒𝑛𝑑𝑒𝑟



Vectorized Linear Regression
We can collate all inputs and responses of the dataset into matrices/vectors to 
obtain a more compact formulation 

𝑿 =
𝑥1

1 … 𝑥𝑘
1

⋮ ⋱ ⋮
𝑥1

𝑁 … 𝑥𝑘
𝑁

 𝒚 =
𝑦1

⋮
𝑦𝑁

 𝜽 =
𝜃1

⋮
𝜃𝑘

Vectorized formulation of the linear regression on dataset 𝐷
𝒚 = 𝑿𝜽 + 𝝐

with 𝜖 now being a column vector of normally distributed values
𝝐 = 𝜖1, … , 𝜖𝑁 𝑇 and 𝝐~𝒩(𝟎, 𝜎2)
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One more step of vectorization
If we are predicting M response variables, we a have system of linear equations

𝑦1 = 

𝑘=1

𝐷

𝜃𝑘
1𝑥𝑘 + 𝜖1

⋮

𝑦𝑀 = 

𝑘=1

𝐷

𝜃𝑘
𝑀𝑥𝑘 + 𝜖𝑀

with 𝜽 =
𝜃1

1 … 𝜃1
𝑀

⋮ ⋱ ⋮
𝜃𝑘

1 … 𝜃𝑘
𝑀

Which is vectorized for the whole dataset becomes
𝒀 = 𝑿𝜽 + 𝝐

where 𝜖 is a matrix of errors and 𝒀 a matrix of responses
𝒀 =

𝑦1
1 … 𝑦𝑀

1

⋮ ⋱ ⋮
𝑦1

𝑁 … 𝑦𝑀
𝑁
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Training a linear regression model

• Assume a single response variable and define a loss for the model
• Mean squared error (MSE)

𝐸 ℎ𝜃 𝐷) =
1

𝑁


(𝒙𝑖,𝑦𝑖)

𝐿 ℎ𝜃 𝒙𝑖 , 𝑦𝑖 =
1

𝑁


(𝒙𝑖,𝑦𝑖)

𝑦𝑖 − ො𝑦𝑖 2

• Measures the difference between predicted ො𝑦𝑖 = 𝒙𝑖𝜽 and actual 𝑦𝑖

values (the error 𝜖𝑖)
• Learning amounts to finding the minimum of the error function with 

respect to model parameters

argmin
𝜽

1

𝑁


(𝒙𝑖,𝑦𝑖)

𝑦𝑖 − 𝒙𝑖𝜽
2
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Ordinary Least Squares (LS) Solution

For a linear model with quadratic loss there exist a closed form solution for the 
error minimization problem

argmin
𝜽

1

𝑁


(𝒙𝑖,𝑦𝑖)

𝑦𝑖 − 𝒙𝑖𝜽
2

= argmin
𝜽

1

𝑁
𝒚 − 𝑿𝜽 𝟐

Minimize squared regression error by taking the derivative
𝜕 𝝐 2

𝜕𝜃
=

𝜕 𝒚 − 𝑿𝜽 2

𝜕𝜃
= ⋯ = −2 𝑿𝑇𝒚 + 2 𝑿𝑇𝑿𝜽 = 0

Yields the ordinary least square solution
𝜽 = [ 𝑿𝑇𝑿 −1𝑿𝑇]𝒚

Pseudo-inverse
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What can possibly go wrong?

• The objective in machine learning is to find those parameters that 
allow generalizing predictions to unseen data (avoiding overfitting)

• To achieve this, we need to control model complexity
• Regularized linear regression

• L2 Regularization (Ridge)
• L1 Regularization (Lasso)
• Elastic Net (Combination of L1 & L2)
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Ridge Regression (L2) 

• Adds squared weight 
penalties

∥ 𝜽 ∥2
2= 

𝑘

𝜃𝑘
2

• Helps when data contains 
correlated features

𝜃2

𝜃1

𝜆 ∥ 𝜽 ∥2
2

Minimize cost

Minimize penalty Minimize cost + penalty

argmin
𝜽

1

𝑁


(𝒙𝑖,𝑦𝑖)

𝑦𝑖 − 𝒙𝑖𝜽
2

+ 𝜆 ∥ 𝜽 ∥2
2
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Least Square Solution to Ridge Regression

A modified version of the ordinary LS

argmin
𝜽

1

𝑁


(𝒙𝑖,𝑦𝑖)

𝑦𝑖 − 𝒙𝑖𝜽
2

+ 𝜆 ∥ 𝜽 ∥2
2

Yields to a slightly different solution
𝜽 = [ 𝑿𝑇𝑿 + 𝜆𝑰 −1𝑿𝑇]𝒚

Stabilizes numerically the solution by adding some 𝜆 weight to the 
diagonal of the (moment) matrix to be inverted
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Lasso Regression (L1) 

• Adds absolute value 
penalties

∥ 𝜽 ∥1= 

𝑘

𝜃𝑘

• Encourages sparsity
• Useful for feature 

selection in biomedical 
datasets

argmin
𝜽

1

𝑁
σ

(𝒙𝑖,𝑦𝑖) 𝑦𝑖 − 𝒙𝑖𝜽
2

+ 𝜆 ∥ 𝜽 ∥1

𝜃2

𝜃1

𝜆 ∥ 𝜽 ∥1

Minimize cost + penalty
𝜃1 = 0
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ElasticNet – Best of both worlds

Elastic-net applies both the L2 norm 
and L1 norm at the same time, so the 
constraint is somewhere in the middle. 
It reduces larger weights while making 
unimportant weight to 0

-1.5 -1.0 -0.5 0.5 1.0 1.50.0

0.5

1.0

1.5

0.0

-1.5

-1.0

-0.5

argmin
𝜽

1

𝑁


(𝒙𝑖,𝑦𝑖)

𝑦𝑖 − 𝒙𝑖𝜽
2

+  𝜆1 ∥ 𝜽 ∥1 +𝜆2 ∥ 𝜽 ∥2
2
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Alternative Loss Functions
• We can compute the loss using the absolute value yielding to the 

Mean Absolute Error (MAE)

𝐸 ℎ𝜃 𝐷) =
1

𝑁


(𝒙𝑖,𝑦𝑖)

𝐿 ℎ𝜃 𝒙𝑖 , 𝑦𝑖 =
1

𝑁


(𝒙𝑖,𝑦𝑖)

𝑦𝑖 − ො𝑦𝑖

• Differentiable and 
closed form solutions

• Penalizes larger errors 
more heavily due to 
squaring

• Sensitive to outliers

• Not (everywhere) 
differentiable and no 
closed form solutions

• Treats all errors equally
• Less sensitive to 

outliers

MSE MAE
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More on Regression Error Metrics

• 𝑀𝑆𝐸 =
σ𝑖=1

N 𝑦𝑖−ෞ𝑦𝑖
2

N

• 𝑀𝐴𝐸 =
σ𝑖=1

N 𝑦𝑖−ෞ𝑦𝑖

N

• 𝑅𝑀𝑆𝐸 = 𝑀𝑆𝐸

• 𝑀𝐴𝑃𝐸 =
100

N
× σ𝑖=1

N 𝑦𝑖−ෞ𝑦𝑖

𝑦𝑖

Root Mean Squared Error

Mean Absolute Precision Error
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Confidence Intervals on Errors

Confidence intervals can be straightforwardly estimated for simple 
(1D) linear regression

𝐶𝐼 = ො𝑦 ± 𝑧 ⋅ 𝑒𝑟𝑟
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Confidence Intervals on Errors

Confidence intervals can be straightforwardly estimated for simple 
(1D) linear regression

𝐶𝐼 = ො𝑦 ± 𝑧 ⋅ 𝑒𝑟𝑟

• 𝑧 is the critical value corresponding to the expected confidence 
level 𝛼 (e.g. 𝛼 = 95%) assuming a Student distribution with N-2 
degrees of freedom 

𝑧 = 𝑡1−𝛼,𝑁−2
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Student Distribution
Simply put: the generalization of 
a Normal distribution
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…

Image credits to Wikipedia



Confidence Intervals on Errors

Confidence intervals can be straightforwardly estimated for simple 
(1D) linear regression

𝐶𝐼 = ො𝑦 ± 𝑧 ⋅ 𝑒𝑟𝑟

• 𝑧 is the critical value corresponding to the expected confidence 
level 𝛼 (e.g. 𝛼 = 95%) assuming a Student distribution with N-2 
degrees of freedom 

𝑧 = 𝑡1−𝛼,𝑁−2

• 𝑒𝑟𝑟is the standard estimate of error

𝑒𝑟𝑟 = 𝑀𝑆𝐸
1

N
+

(𝑥 − ҧ𝜇𝑥)2

σ𝑖=1
𝑁 (𝑥𝑖 − ҧ𝜇𝑥)2
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Logistic Regression
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Logistic regression setting
Binary classification task: given an input 𝒙 assign a class in 𝑦 ∈ {0,1}
according the unknown function 𝑦 = 𝑓 𝒙 using a model h𝜃

• Usual dataset 𝐷 = 𝒙1, 𝑦1 ; … 𝒙𝑁, 𝑦𝑁

• Input/free variables: i.e. 𝒙𝑛 = 𝑥1
𝑛, … , 𝑥𝑘

𝑛, … , 𝑥𝐷
𝑛 ∈ ℝ𝐷

• Output/response variable 𝑦

samples

features class
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Understanding Logistic Regression
Learns a decision boundary separating two classes

• Assigns an input 𝒙 to the 
probability of being in class 
1, i.e. 𝑃(𝑦 = 1|𝒙)

• We check on which side of 
the boundary the sample 
falls into and assign the 
class accordingly

• Distance from the boundary 
affects the probability
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Building the logistic regression

We start again from a linear model

𝑦 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯ + 𝜃𝐷𝑥𝐷 = 

𝑘=1

𝐷

𝜃𝑘𝑥𝑘 = 𝒙𝜽

Ideally
• 𝜃𝑘 > 0: the feature "is related to" class 1
• 𝜃𝑘 < 0: the feature "is related to" class 0
• 𝜃𝑘 = 0: the feature is irrelevant

We sum the features weighted by the parameters.
• Positive result: I assign class 1.
• Negative result: I assign class 0.
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In practice..

• Things are a bit more complex
• Logistic regression assigns a probability to each sample:
• A value in the range (0,1)

• 1: I am certain input x belongs to class 1
• 0: I am certain input x does not belong to class 1
• Everything in between represents the degree of confidence in class 1

• Problem: I need to squash the 𝒙𝜽 (unbound) regression in [0,1] 
respecting the sum-to-1 constraint of probabilities. How?
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The Sigmoid
Defined as

𝜎(x)=
1

1 + 𝑒−𝑥

Behaviour:
• 𝑥 ≥ 6 → 𝜎(x) ≈ 1

• 𝑥 ≤ −6 → 𝜎(x) ≈ 0

• 𝑥 = 0 → 𝜎(x) = 0.5

So, we can have:
• If 𝒙𝜽 is very positive, 𝜎(𝒙𝜽) ≈ 1

• If 𝒙𝜽 is very negative, 𝜎(𝒙𝜽) ≈ 0

Summarizing our logistic 
regression model is 

h𝜃 x = 𝜎(𝒙𝜽)
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Training the logistic regression
Choose a suitable loss: the binary cross-entropy (BCE)

𝐿 ℎ𝜃 𝒙 , 𝑦 = −y log ℎ𝜃 𝒙 − 1 − 𝑦 log 1 − ℎ𝜃 𝒙
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A Gradient Based Approach

• The gradient is the vector of partial derivatives of the loss function 
with respect to the weights 𝜽

∇𝜽𝐿 = ቤ
𝜕𝐿

𝜕𝜃𝑘 𝑘=1…D

=
𝜕𝐿

𝜕𝜃1
…

𝜕𝐿

𝜕𝜃𝑑

𝑇

• The gradient tells us how to modify the parameters in a way that 
increases the loss.

• To decrease the loss, we need to update the parameters in the 
opposite direction of the gradient
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Gradient Descent

𝜃𝜃

𝐿
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BCE Gradient

For Binary Cross-Entropy (BCE), the gradient is given by
∇𝜃𝐿 = 𝒙 ℎ𝜃 𝒙 − 𝑦

Interpretation:
• ℎ𝜃 𝒙 − 𝑦  is the error made when predicting y with the current 

parameters 𝜽
• 𝒙 ℎ𝜃 𝒙 − 𝑦  is the contribution of each feature to the error
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Gradient Descent Algorithm
• Gradient Descent is an iterative algorithm used to find the minimum of any function.
• We use it to update the parameters 𝜽 in a way that progressively reduces the loss.

Steps of the Algorithm
1.Initialize 𝜽 with random values. 
2.Compute the loss using the assigned 𝜽 (call it 𝜽𝑜𝑙𝑑) 
3.Compute the gradient of the loss 

𝛁𝜽𝑳 = 𝒙 ℎ𝜃 𝒙 − 𝑦  
3.Update 𝜽 using the rule 

𝜽𝑛𝑒𝑤 = 𝜽𝑜𝑙𝑑 − 𝜂𝜵𝜽𝑳
5.Repeat until reaching the minimum of the loss function. 

Step Size (η - Learning Rate)
•η (learning rate) controls how big the update step is 
•It is usually < 1 to ensure stable convergence
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Gradient Descent on a Loss Landscape

𝐿 ℎ𝜃1,𝜃2
𝒙 , 𝑦

𝐿 ℎ𝜃1,𝜃2
𝒙 , 𝑦
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Training Algorithm Summary

For a certain number of iterations (epochs), the algorithm updates 
the parameters Θ based on the training data 𝐷𝑡𝑟𝑎𝑖𝑛.
For each training pair 𝒙𝑖 , 𝑦𝑖 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛:

1.Compute the prediction ℎ𝜃 𝒙𝑖 = 𝜎(𝒙𝑖𝜽) 
2.Compute the loss L of the prediction ℎ𝜃 𝒙𝑖  compared to the true label 𝑦𝑖

3.Compute the gradient of the loss 𝛁𝜽𝑳
4.Update the parameters 𝜽𝑛𝑒𝑤 = 𝜽 − 𝜂𝜵𝜽𝑳
5.Use the updated parameters in the next iteration 𝜽 = 𝜽𝑛𝑒𝑤

This process repeats for multiple epochs, allowing the model to 
progressively minimize the loss and improve its predictions
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What if I add some regularization?

• Need to update the learning equations (descends again 
from taking the derivative of the error)

• Weight update with L1 (LASSO)
𝜽𝑛𝑒𝑤 = 𝜽 − 𝜂(𝜵𝜽𝑳 + 𝜆 𝑠𝑖𝑔𝑛 𝜽 )

• Weight update with L2 (Ridge)
𝜽𝑛𝑒𝑤 = 𝜽 − 𝜂(𝜵𝜽𝑳 + 2𝜆𝜽)
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Limitations of Logistic Regression
The decision boundary of logistic regression is linear (literally, a 
plane that separates the two classes).

• If the classes are linearly separable, logistic regression works perfectly.
• What if the classes are not separable?
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Wrap-up
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Linear Regression towards Neural Networks

⋮
⋮
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Logistic Regression towards Neural Networks

⋮
⋮
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Take home lessons

• Linear models as your first ML method
• Parameters are coefficients of the linear combination
• Have a (potentially misleading) interpretation n terms of input feature importance
• Not so far from a neural network

• Regularization into action as parameter value penalties
• Ridge (L2-norm) – Smoothens collinearity issues; closed form learning solutions
• Lasso (L1-norm) – Promotes feature sparsity; typically, gradient-based learning
• ElasticNet – Best of both worlds

• Logistic Regression as first binary classifier providing with a probability of 
class membership
• Widely used in early biomedical applications

• Model losses: MSE, MAE, BCE, …
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Next Lecture

• Lab tutorials
• Introduction to neural networks (next week)

• Modeling the artificial neuron
• Artificial neural networks and the multilayer perceptron

• Layered structure

• Activation functions

• Outputs and losses

• Training Artificial neural networks 

• Backpropagation algorithm

• Loss optimization
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