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○ Bayesian Networks (Tuesday 4th)

○ Bayesian Networks (Thursday 6th)

○ Graphical Causal Models (Tuesday 11th)

○ Structure Learning and Causal Discovery (Wednesday 12th, 
today!)

● Constraint-Based Methods (PC, FCI)

● Score-Based Methods (GES)

● Parametric Assumptions (Additive Noise Models)

Probabilistic and Causal Learning



Learning with Bayesian Networks 
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The Structure Learning Problem
○ Observations are given for a set of

fixed random variables

○ Network structure is not specified

● Determine which arcs exist in the network 
(causal relationships ⇒ causal discovery)

● Compute Bayesian network parameters 
(conditional probability tables) or SCM 
parameters (structural functions)

○ Determining the graph entails

● Deciding on arc presence

● Directing edges
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Structure Finding Approaches
○ Constraint Based

● Use tests of conditional independence

● Constrain the network

○ Search and Score
● Model selection approach

● Search in the space of the graphs

○ Parametric Identifiability
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Markov Equivalence Class
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○ A Markov Equivalence Class (MEC) 

is a set of DAGs encoding the same 

set of conditional independences.

○ Two DAGs are Markov equivalent

if and only if they have the same 

skeleton and the same set of 

colliders (v-structures).



Constraint-Based Methods
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Constraint-based methods require:

○ Faithfulness, i.e., all conditional independences are represented from 

the distribution are represented in the graph.

○ Causal Sufficiency, i.e., all confounders are observed and there is not 

selection bias.



Constraint-Based Methods
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○ We can reconstruct the Markov Equivalence Class by iteratively 

performing conditional independence testing (χ2-test, KCI-test, Fisher 

z-test, G-square test, …).

○ The Spirtes, Glymour, and Scheines (SGS) and the Peter and Clark (PC) 

algorithms are the fundamental constraint-based discovery methods.



SGS Algorithm: Skeleton
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○ Two variables X and Y

are adjacent in the 

skeleton if they are 

always conditionally 

dependent, i.e., there 

exists no separating 

set without X and Y.



SGS Algorithm: v-structures
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○ If two variables X and Y

are not adjacent in the 

skeleton and there exists 

a third variable W that
● It is adjacent to both X

and Y, and

● It is not a member of any 

separating set:

○ We found a collider!



SGS Algorithm: Additional Orientations
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○ By avoiding the 

introduction of new 

colliders and cycles, we 

can further orient other 

edges.

○ Still, we might have some 

unoriented edges and 

return a Completed 

Partially Directed Acyclic 

Graph (CPDAG).



Meek Rules
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○ The orientations of the 

SGS algorithm (R1, R2) 

are generalized by the 

Meek rules to avoid 

indirectly introducing 

new v-structures.

○ They still do not 

guarantee a DAG but 

decrease the MEC.



Testing Strategy
○ Choice of the testing order is fundamental for avoiding a super-exponential

complexity

○ Level-wise testing

● Tests 𝐼(𝑋𝑖, 𝑋𝑗|𝑍) are performed in order of increasing size of the conditioning set 𝑍

(starting from empty 𝑍)

● PC algorithm (Spirtes, 1995)

○ Node-wise testing
● Tests are performed on a single edge at the time, exhausting independence checks 

on all conditioning variables

● TPDA Algorithm

○ Nodes that enter 𝑍 are chosen in the neighborhood of 𝑋𝑖 and 𝑋𝑗
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PC Algorithm: Skeleton
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○ Instead of checking all 

possible separating sets, 

as in SGS, the PC 

algorithm considers 

separating sets of 

increasing size.

○ Same worst case of SGS, 

much better on average!



Constraint-Based Methods
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○ Is the CPDAG produced by a constraint-based method enough?

○ Probabilistic Queries P(Y|X)

⇒ We can take any graph in the MEC and use it! 

○ Interventional P(Y|do(X)) or counterfactual P(Y|do(X), Y') queries

⇒ We need further knowledge to orient undirected edges. 

○ Given the graph, we need to choose the distribution families, for 

BNs/CBNs, or the mechanisms, for SCMs, and learn the parameters.



Search & Score

○ Search the space Graph(Y) of graphs 𝐺𝑘

that can be built on the random variables 

𝒀 = 𝑌1, … , 𝑌𝑁

○ Score each structure by 𝑆(𝐺𝑘)

○ Return the highest scoring graph 𝐺∗

○ Two fundamental aspects
● Scoring function

● Search strategy
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Scoring Function
○ Fundamental properties

● Consistency - Same score for graphs in the same equivalence class

● Decomposability - Can be locally computed

○ Approaches
● Information theoretic - Based on data likelihood plus some model-

complexity penalization terms  (AIC, BIC, MDL, …)

● Bayesian – Score the structures using a graph posterior (likelihood +  

proper prior choice)
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Search Strategy
○ Finding maximal scoring structures is NP complete (Chickering, 2002)

○ Constrain search strategy
● Starting from a candidate structure modify iteratively by local operations (edge/node 

addition or deletion)

● Each operation has a cost

● Cost optimization problem: greedy hill-climbing, simulated annealing, …

○ Constrain search space
● Known node order – Can reduce the search space to the parents of each node (Markov Blanket)

● Search in the space of structure equivalence classes (GES algorithm)

● Search in the space of node orderings (Friedman and Koller, 2003)
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Hybrid Models
○ Multi-stage algorithms combining previous approaches 

○ Independence tests to find a sub-optimal skeleton (good starting point)

○ Search and score starting from the skeleton
● Skeleton refinement

● Edge orientation

○ Max-Min Hill Climbing (MMHC) model
● Optimized constraint-based approach to reconstruct the skeleton (Max-Min Parents 

and Children)

● Use the candidate parents in the skeleton to run a search and score approach

DAVIDE BACCIU - ISPR COURSE 21



DAVIDE BACCIU - ISPR COURSE 22

A Linear Additive Noise Model (ANM) is 

a structural causal model where the 

functional mechanisms are linear and 

the noise is additive.

Formally, given a matrix W ∈ ℝn×n,

Linear Additive Noise Model



DAVIDE BACCIU - ISPR COURSE 23

The identifiability of a linear Additive Noise 
Model from data strongly depends on the 
distribution of the noise terms.

○ Gaussian w/ Equal Variance ⇒ Yes!
● Not so common in real-world applications.

○ Gaussian w/o Equal Variance ⇒ No!

○ Non-Gaussian Noise ⇒ Yes!
● ICA-LiNGAM, DirectLingam, PairwiseLingam...

Identifiability of Linear ANMs
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Common Identifiability Results for SCMs

From “Elements of Causal Inference” by Peters et al.



Take Home Messages 
○ Directed graphical models

● Represent asymmetric (causal) relationships between RV and conditional probabilities 

in compact way

● Difficult to assess conditional independence (v-structures)

● Ok for prior knowledge and interpretation

○ Undirected graphical models
● Represent bi-directional relationships (e.g. constraints)

● Factorization in terms of generic potential functions (not probabilities)

● Easy to assess conditional independence, but difficult to interpret

● Serious computational issues due to normalization factor

○ Structure learning to infer multivariate causal relationships from data
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