Survival Analsysis

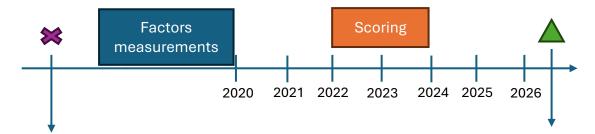
Artificial Intelligence for Digital Health (AID) M.Sc. in Digital Health – University of Pisa Davide Bacciu (davide.bacciu@unipi.it)

Lecture Outline

- Formalizing survival analysis as a regression problem
- Survival function estimation with baseline statistical models
 - Kaplan-Meier
 - Cox regression
- A broader view into machine learning for survival analysis
 - Neural networks for survival analysis
 - Survival trees

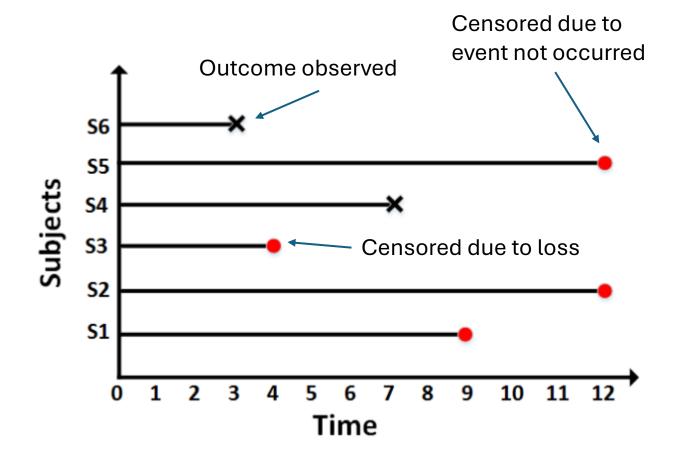
Previous lecture: risk stratification as (binary) classification

Right-censoring makes tackling the problem as a classification one specially challenging



Left The observations of some censoring factors for some subjects may not be available (e.g. it was collected in a different hospital) Outcomes for some **Right** patient may not have **censoring** materialized yet (so labelling of the outcome is not available)

Alternative framing: Survival Modelling



- Shift focus on predicting the time-to-event (or outcome) rather than event occurrence
- Change a classification problem with a regression one
- Advantages over classification
 - More training data retained
 - More fine-grained predictions

Survival Analysis Fundamentals

Time-to-Event Outcomes

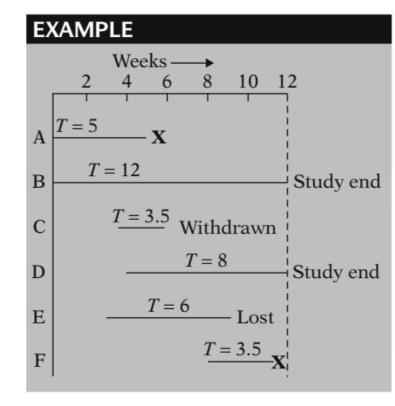
- In survival analysis the outcome variable of interest T is time until an event occurs
- Time: years, months, weeks, or days from the beginning of follow-up of a subject until an event occurs (sometimes also the age of an individual)
- Event: any designated experience of interest that may happen to an individual in our study (death, disease incidence, relapse from remission, recovery, ...)

Examples

- Leukemia patients/time in remission (weeks)
- Disease-free cohort/time until heart disease (years)
- Heart transplants/time until death (months)

Right-censoring

Censoring occurs when we have some information about individual survival time, but we don't know the survival time exactly



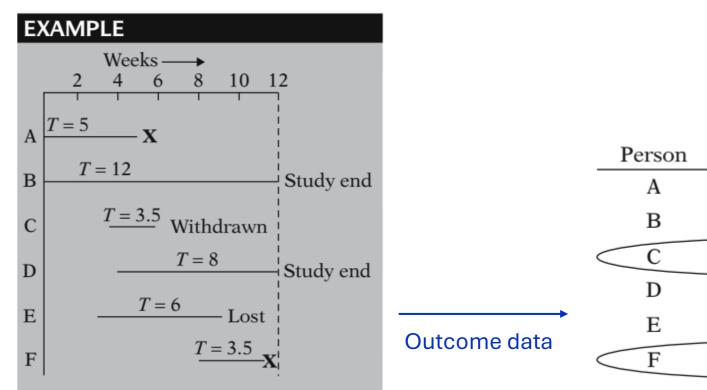
Three main reasons for censoring:

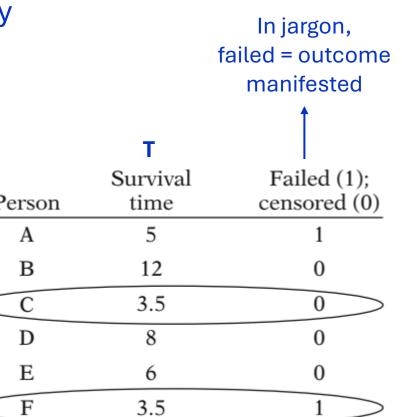
- 1. Subject does not experience the event before the study ends
- 2. Subject is lost to follow-up during the study period
- 3. Subject withdraws from the study because of death (if death is not the event of interest) or some other competing risk (e.g., adverse drug reaction)

Source: Kleinbaum & Klein, 2005

Right-censoring

Censoring occurs when we have some information about individual survival time, but we don't know the survival time exactly





Source: Kleinbaum & Klein, 2005

Terminology and Notation

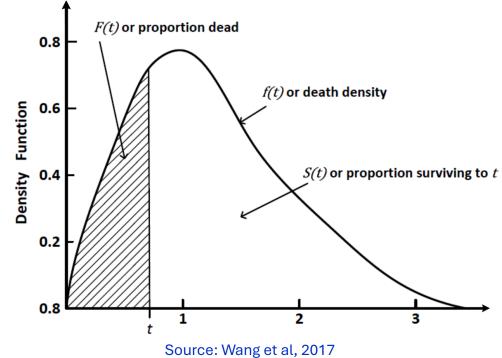
- $T \ge 0$ random variable for a subject survival time
- t is a specific value of time
- f(t) and F(t) denote the density and cumulative density (failure function) of T

$$F(t) = P(T \le t) = \int_0^{\infty} f(\tau) d\tau$$

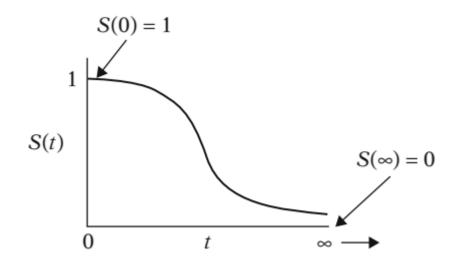
• We are interested in the survival (survivor) function

$$S(t) = P(T > t) = \int_t^\infty f(\tau) d\tau = 1 - F(t)$$

The probability that a subject survives beyond a particular time *t*



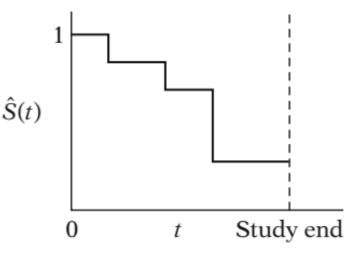
Survival Function



- Monotonic, nonincreasing
- Equals 1 at time 0 and decreases to 0 as time approaches infinity

Clearly, this is **purely theoretic**

- In practice, we typically obtain graphs that are step functions
- Study period is never infinite in length and the estimated survivor function may not go to zero at the end of the study



Hazard Function

Hazard h(t) - Instantaneous "probability" per unit time that an event occurs exactly at time t given that the patient has survived at least until time t

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t \mid T \ge t)}{\Delta t}$$

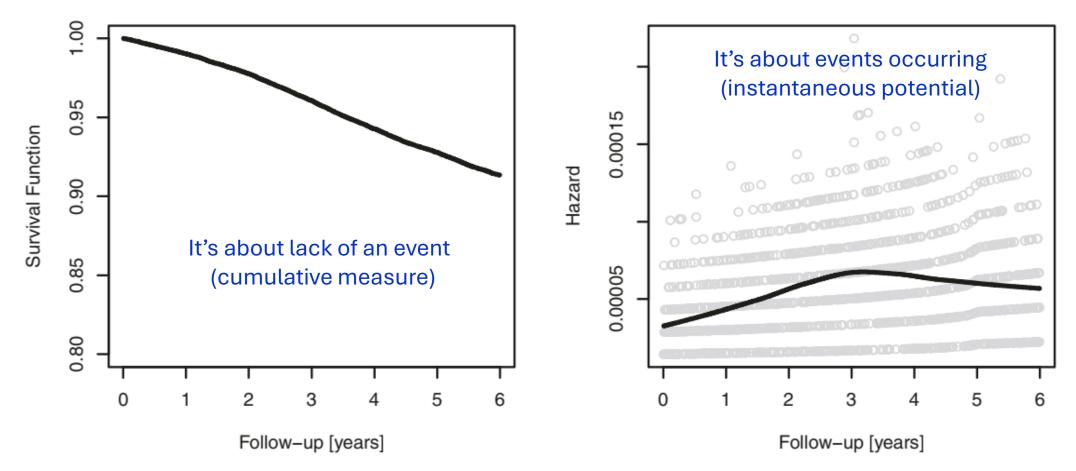
Also known as velocity of the failure function or conditional failure rate (scale for this ratio ranges in $[0, \infty)$, and depends on the unit of time being considered)

We also have the cumulative hazard

$$H(t) = \int_0^t h(\tau) d\tau \quad \text{s.t. } S(t) = \exp(-H(t))$$

Survival Vs Hazard

While the survivor function is more naturally appealing for analysis of survival data, the survival model is usually written in terms of the hazard function



Source: Simon & Alifieris, 2024

Estimating the Survival Function

Baseline Survival Estimators

Ordered failure times t _i	# at risk	# of failures	# censored in [t_{j} , t_{j+1})
٤j	n _j	d_j	C _j
0	21	0	0
6	21	3	1
7	17	1	1
10	15	1	2
13	12	1	0
16	11	1	3
22	7	1	0
23	6	1	5
	0		

- We can compute the average or median survival time for our reference populations

 - Mean survival of placebo group $\rightarrow \frac{182}{21} = 8.7$ weeks Mean survival of treatment group $\rightarrow \frac{359}{21} = 17.1$ weeks
- These estimates ignore censored subjects
 - They likely were in remission for even longer
 - Underestimates their remission duration
- We can use average hazard rate to account for censoring instead

$$\bar{h} = \frac{\sum_{j} \delta_{j}}{\sum_{j} T_{j}} \text{ where } \delta_{j} = \begin{cases} 1 \text{ if outcome occurred} \\ 0 \text{ if censored} \end{cases}$$

Kaplan-Meier (KM) Method

- Nonparametric estimator: more effective when no-assumptions on event time distribution or proportional hazard can be made
- Main intuition: survival probability at time t_j is a product of the same estimate up to the previous time t_{j-1} and the observed survival rate at t_j
- Let's put it into formulas

$$\hat{S}(t_j) = P(T > t_j) = \hat{S}(t_{j-1}) \times P(T > t_j | T > t_{j-1})$$

• This is a recursive formulation in time which, through some mathematical manipulation yields to the final KM estimator

$$\hat{S}(t_j) = \prod_{i \le j} (1 - \hat{h}_j) = \prod_{i \le j} \left(1 - \frac{d_i}{n_i} \right) \quad n_i = n_{i-1} - d_{i-1} - c_{i-1}$$

where d_i is the number of events at time t_i and n_i is the number of subjects at risk at time t_i and c_i is the number of censored

Computing KM on Censored Data

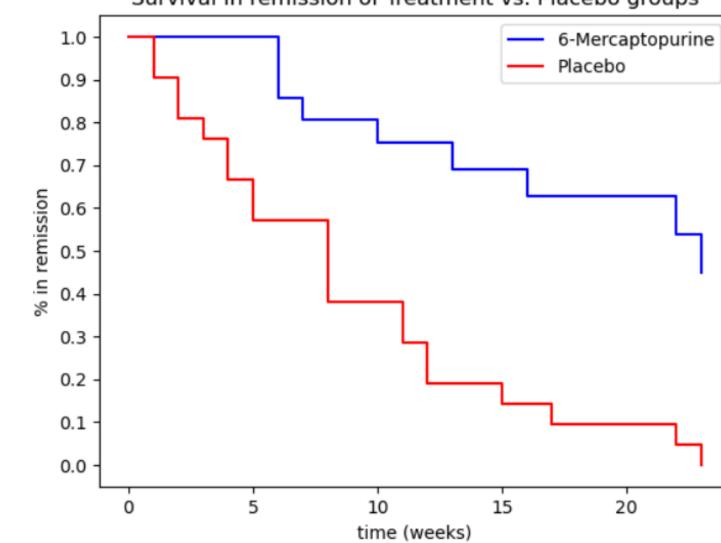
Ordered failure times t j	# at risk $m{n_j}$	# of failures d j	# censored in [<i>t_j, t_{j+1}</i>) <i>C_j</i>	$\hat{S}(t_j)$
0	21	0	0	1
6	21	3	1	1 x 18/21 = .8571
7	17	1	1	.8571 x 16/17 = .8067
10	15	1	2	0.8067 x 14/15 = .7529
13	12	1	0	.7529 x 11/12 = .6902
16	11	1	3	0.6902 x 10/11 = .6275
22	7	1	0	.6275 x 6/7 = .5378
23	6	1	5	.5378 x 5/6 = .4482
	0			

$$\hat{S}(t_j) = \prod_{i \le j} \left(1 - \frac{d_i}{n_i} \right)$$

$$n_i = n_{i-1} - d_{i-1} - c_{i-1}$$

- d_i number of events
- n_i number of subjects at risk
- *c_i* number of censored

Comparing Treatment Group Vs Placebo Survival



Survival in remission of Treatment vs. Placebo groups

Confidence intervals for the survival curves

• Greenwood's formula is a common method for directly estimating the confidence interval of the log-survival function (there are many more)

$$Var(\log \hat{S}(t_j)) = \sum_{i \le j} \frac{d_i}{n_i(n_i - d_i)}$$

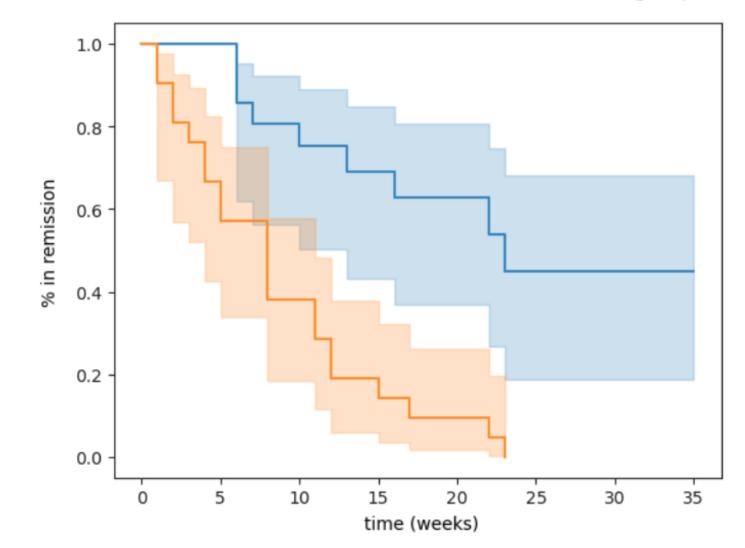
Variance of the (non-log) survival function can be obtained by the delta method

$$\hat{S}(t_j) = z \sqrt{\hat{S}(t_j)^2} \sum_{i \le j} \frac{d_i}{n_i(n_i - d_i)}$$

where z is the normal quantile corresponding to the confidence level (ie. for 95% confidence z = 1.96)

Survival curves with confidence intervals

Survival in remission of Treatment vs. Placebo groups



Plot credit: P. Szolovits @ MIT

Comparing Survival Curves

- Consider a group variable which divides the population into G groups: assess association between grouping and survival at each time t_i
- Consider for simplicity G=2, the expected number of events in group 1 at time t_j

$$e_{1j} = \frac{n_{1j}}{n_{1j} + n_{2j}} \left(d_{1j} + d_{2j} \right)$$

where n_{gj} denotes the number of subjects in group g at t_j (similarly for d_{gj})

• The log-rank test statistics is

$$Z = \frac{\left(O_g - E_g\right)^2}{Var\left(O_g - E_g\right)} \text{ with } O_g = \sum_j d_{gj} \text{ , } E_g = \sum_j e_{gj}$$

under the null hypothesis "no difference between survival curves" then $Z \sim \chi^2$

Cox Proportional Hazards Model

- Let us reintroduce a regression model as it allows assessing the effect of covariates on the hazard and making predictions
- Cox proportional hazard is a semiparametric model multiplying a nonparametric baseline hazard h_0 (function of time) to the covariates/features x_i effect (time invariant)

$$h_i(t) = h_0(t) \exp(\theta x_i)$$

- $h_i(t) \rightarrow$ hazard of the *i*th subject at time t
- $h_0(t) \rightarrow$ baseline hazard (shared between subjects)
- $\theta \rightarrow \text{regression coefficients}$

Cumulative Hazard and Survival

Cumulative hazard can be obtained from integration of the hazard potential

$$H_i(t) = H_0(t) \exp(\theta x_i) = \int_0^t h_0(\tau) d\tau \exp(\theta x_i)$$

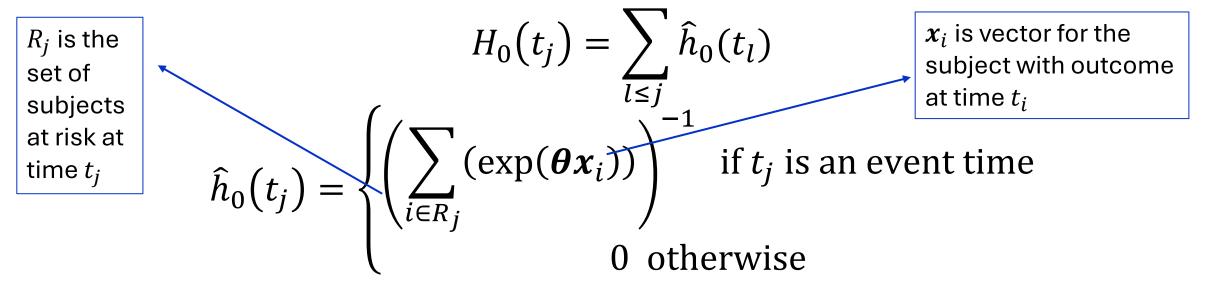
• The survival function then reads as $S_i(t) = \exp(H_0(t)\exp(\theta x_i)) = S_0(t)^{\exp(\theta x_i)}$

where the baseline survival function is

 $S_0(t) = \exp(H_0(t))$

Estimating the Cox Model (1)

- Computig the Cox proportional hazard requires (1) estimating the cumulative baseline hazard (nonparametric) and (2) fit the regression parameters θ
- Breslow estimator (1)



Estimating the Cox Model (2)

 Regression parameters are found as a minimization problem of the following loss (log-partial likelihood)

Sums over ordered times *t_i*

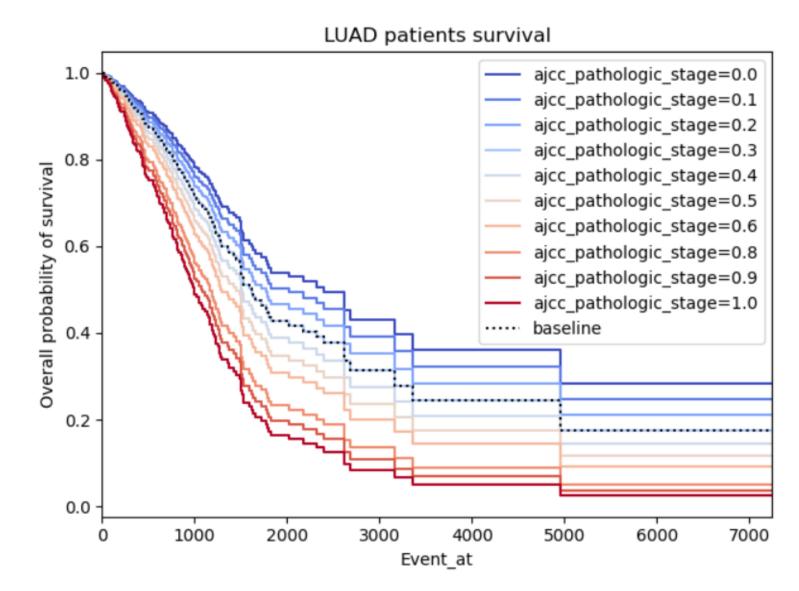
• The update rule for parameters θ are derived by minimization of $\mathcal{L}(\theta)$ (e.g. by some form of gradient descent)

 $\mathcal{L}(\boldsymbol{\theta}) = \sum_{j=1}^{i} \delta_j \left(\boldsymbol{\theta} \boldsymbol{x}_j - \log \left(\sum_{i \in R_i}^{i} \exp(\boldsymbol{\theta} \boldsymbol{x}_i) \right) \right)$

- We can add to $\mathcal{L}(\pmb{\theta})$ all regularization strategies we have seen so far

censoring

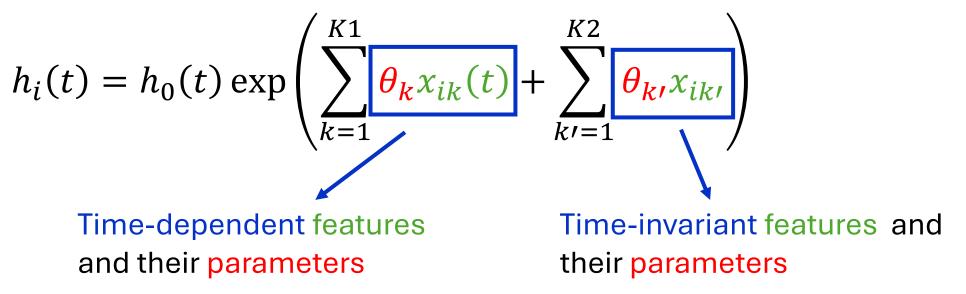
Cox Survival Curves



Allow to assess the effect of risk factors on survival

Time-Dependent Cox Model

- We can relax the vanilla Cox assumption about *x* features being time invariant
- The time-dependent Cox model



Modern Survival Analysis Landscape

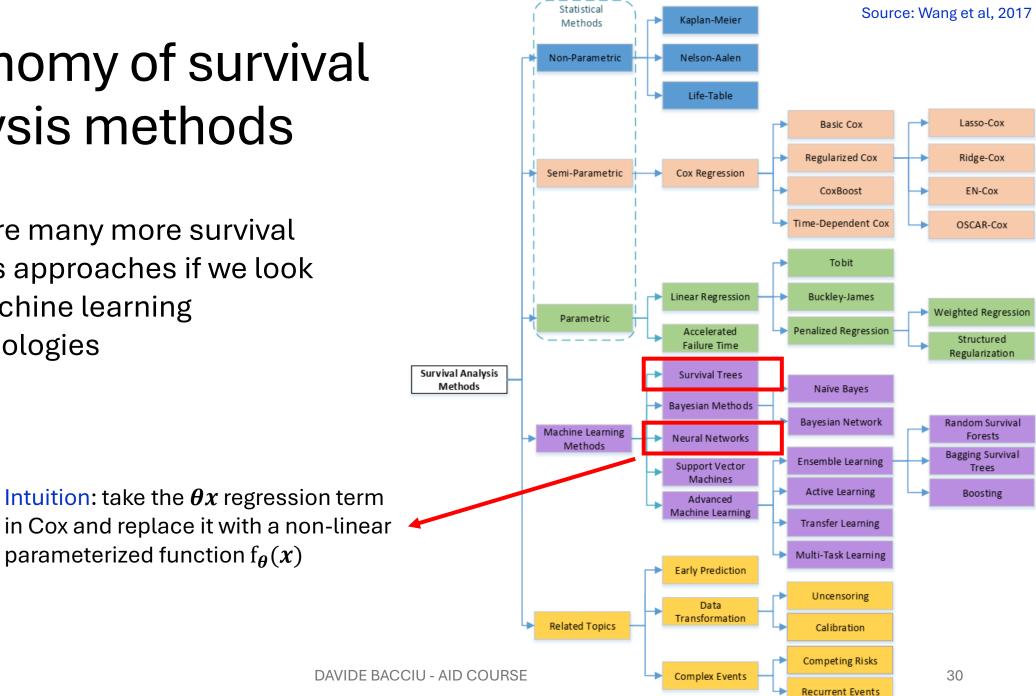
Wrapping-up on Statistical Methods

Туре	Advantages	Disadvantages	Specific methods
Non-parametric	More efficient when no suitable theoretical dis- tributions known.	Difficult to interpret; yields inaccurate esti- mates.	Kaplan-Meier Nelson-Aalen Life-Table
Semi-parametric	The knowledge of the underlying distribution of survival times is not required.	The distribution of the outcome is unknown; not easy to interpret.	Cox model Regularized Cox CoxBoost Time-Dependent Cox
Parametric	Easy to interpret, more efficient and accurate when the survival times follow a particular dis- tribution.	When the distribution assumption is violated, it may be inconsistent and can give sub-optimal results.	Bu v-Janes Penal ed Session Accelerate Ture Time

Source: Wang et al, 2017

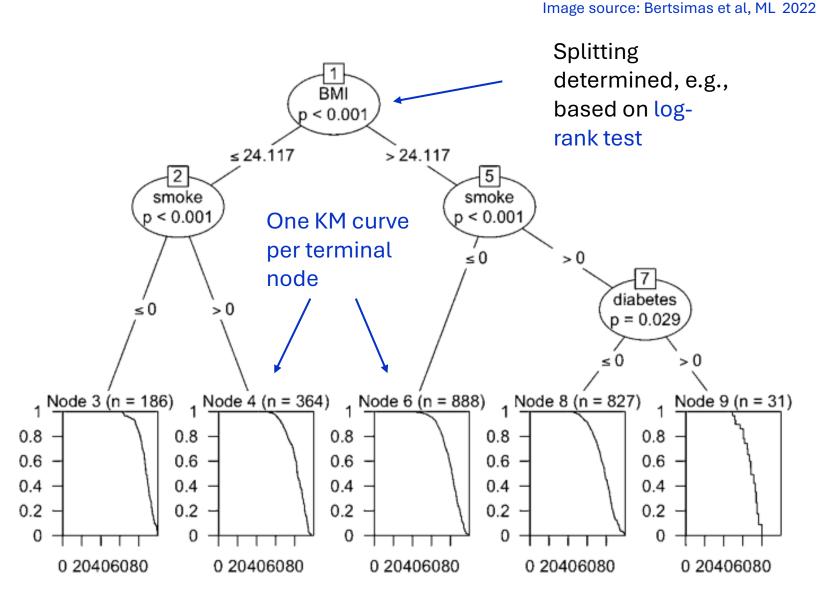
Taxonomy of survival analysis methods

There are many more survival analysis approaches if we look into machine learning methodologies



Survival Trees

- Decision tree adapted for survival analysis
- The goal is to find the best feature and threshold to split the data into homogeneous survival groups
- Can be generalized to Random Survival Forests



Internal Node Splitting Test

- Compares survival distributions between two or more groups
- Tests if survival curves differ significantly at each potential split
- Selects the split with the largest (log-rank) statistic, ensuring maximal survival time separation
- Statistical hypothesis testing
 - Null Hypothesis (H_0) : There is no difference in survival between the groups
 - Alternative Hypothesis (H_1) : There is a difference in survival between the groups

Splitting Using Log-Rank Test

1. Calculate the Observed O_i and Expected Events E_i

- For each time point where an event occurs, count
 - The number of individuals at risk in each group
 - The observed number of events in each group
 - The expected number of events under the assumption that survival is the same across groups
- 2. Compute the Log-Rank statistic based on the difference between the observed O_i and expected events E_i at each time point
- This follows a χ^2 distribution with 1 degree of freedom (for two groups)

3. Determine Significance

• Compare the test statistic to a χ^2 distribution to get a p-value, with a low p-value (e.g., <0.05) indicating a significant difference in survival between the groups

Log Rank Example

Group splitting	N _i	<i>O</i> _i	Ei
$BMI \leq 24.117$	310	161	143,39
BMI > 24.117	304	123	140.61
Total	614	284	284

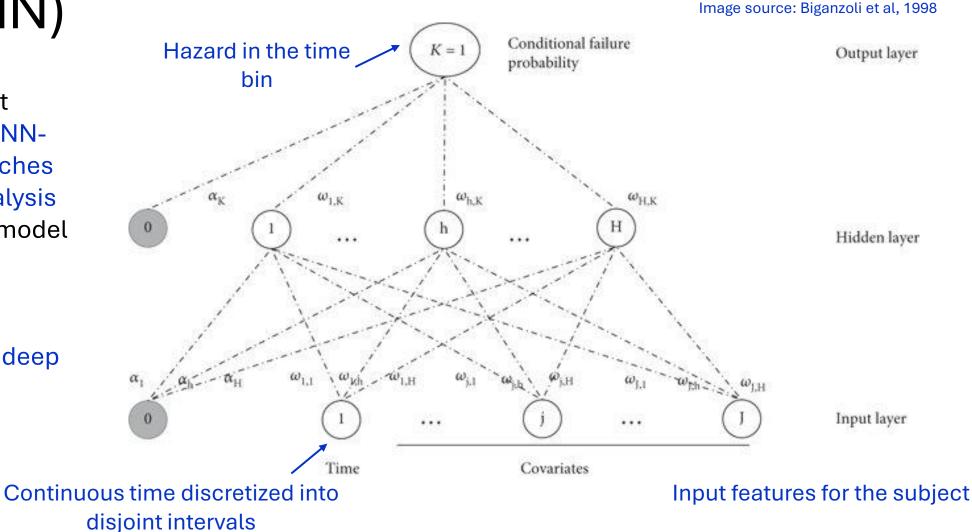
Log-rank test: $\chi_1^2 = 8.2 \rightarrow \text{p-value} = 0.0042$

Partial logistic artificial neural networks (PLANN)

One of the first (feedforward) NNbased approaches to survival analysis

Nonlinear model

Later models introduced recurrent and deep architectures



Wrap-up

Take home lessons

- Survival analysis focuses on time-to-event data to understand outcomes
 - Shift focus on predicting the time-to-event rather than event occurrence
- Challenges with survival data are associated to (right) censoring
 - Outcomes may not materialize within the observation window
 - Competing risks further complicate the picture by "masking" outcomes
- Two baseline statistical estimators of survival
 - Kaplan-Meier (non-parametric): useful when no assumption on underlying distribution can be made
 - Cox regression (semi-parametric): allows introducing subject information in a non-parametric baseline
- More recently a broad set of non-linear survival analysis methods based on neural networks have been proposed
 - But there are also survival trees, survival forests, survival support vector machines
 - All nicely implemented for you (in the R language and else)

Next Lecture(s)

Introduction to Bayesian networks

- Graphical formalism
 - Structure and components of Bayesian networks
 - Random variables and conditional independence
 - Factorized distributions
- Relevant graphical substructures
- Reasoning graphically on conditional independence
- Learning in Bayesian Networks
- Applications in healthcare