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Lecture(s) Outline

• Introduction to Bayesian networks
• Graphical formalism

• Structure and components of Bayesian networks
• Random variables and conditional independence
• Factorized distributions
• Relevant graphical substructures
• Reasoning graphically on conditional independence

• Learning in Bayesian Networks 
• Applications in healthcare for diagnosis, prognosis, and decision 

support systems
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Probabilistic models
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• ML models that represent knowledge inferred from data under 
the form of probabilities
• Probabilities can be sampled: new data can be generated 
• Supervised, unsupervised, weakly supervised learning tasks 
• Incorporate prior knowledge on data and tasks 
• Interpretable knowledge (how data is generated) 

• The majority of the modern task comprises large numbers of 
variables 
• Modeling the joint distribution of all variables can become impractical 
• Exponential size of the parameter space 
• Computationally impractical to train and predict 



Bayesian Networks - A Graphical 
Framework
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• Representation 
• Bayesian Networks are a compact way to represent exponentially 

large probability distributions 
• Encode conditional independence assumptions 

• Inference 
• How to query (predict with) a Bayesian Network? 
• Probability of unknown random variable 𝑋 given observed ones 𝒅, 

𝑃(𝑋|𝒅)

• Learning 
• Fitting the parameters associated with the model probability 

distribution 
• An inference problem after all 



Graphical Representation
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A graph whose nodes (vertices) are random variables whose edges (links) 
represent probabilistic relationships between the variables

Bayesian Network (BN) Dynamic BNs

Directed edges express 
dependence 
relationships

Allow the BN structure to 
change to reflect dynamic 

processes 



Probability factorization in probabilistic 
ML
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• The main goal of probabilistic modeling is to define models able 
to represent the joint distribution of a set of variables.

• Probabilistic models enable
• Sampling new instances
• Inferencing values of hidden variables
• Estimating the likelihood of a configuration
• ...

Representing Joint Distributions



DAVIDE BACCIU - AID COURSE 8

• Assume N discrete random variables with k distinct values.
• How many parameters in the joint probability distribution?

Representing Joint Distributions
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• What if we compute the probability one variable at the time?
• We can exploit the chain rule to decompose the joint.

Representing Joint Distributions
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• The order of the variables can be represented by directed graphs.

Representing Joint Distributions

...
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• Decomposing the joint with the chain rule
reduces the number of parameters?

• No! 

Representing Joint Distributions

421
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• Two random variables X and Y are independent if knowledge 
about X does not change the uncertainty about Y and vice versa

Marginal and Conditional Independence
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• When variables are independent, we only need Nk parameters.

Representing Joint Distributions

1 1 1
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• Two random variables X and Y are conditionally independent
given Z if knowledge about X does not change the uncertainty 
about Y and vice versa on the conditional distribution

Marginal and Conditional Independence

, ,

, ,
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• Conditional independences reduce the number of parameters
• Yes! 

Representing Joint Distributions

1 2 2



Bayesian Networks
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Bayesian Network
• Directed Acyclic Graph (DAG) 𝒢 = (𝒱, ℰ)

• Nodes 𝑣 ∈ 𝒱 represent random variables 
• Shaded ⇒ observed 

• Empty ⇒ un-observed 

• Edges 𝑒 ∈ ℰ describe the conditional 
independence relationships
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Conditional Probability Tables (CPT) local to each node describe the probability 
distribution given its parents

𝑃(𝑌1, . . . , 𝑌𝑁) = ෑ

𝑖=1

𝑁

𝑃(𝑌𝑖 |𝑝𝑎(𝑌𝑖))
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• Let L be the maximum number 
of ingoing edges in a Bayes 
Net.

• Then, the number of 
parameters is at most N·(k-1)L

• ⇒ The sparser the network, the 
less “complex” the parameters.

Joint probability factorization

𝒀𝟏 𝒀𝟑 P(𝒀𝟑|𝒀𝟏)

false false 0.4

false true 0.6

true false 0.9

true true 0.1

𝒀𝟏 P(𝒀𝟏)

false 0.6

true 0.4
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• Are these relations causal?
• In general no, a Bayesian 

Network represent statistical 
dependence relations.

• However, they might coincide 
with causal dependence under 
further assumptions.

Causality or Dependence?



Local Markov Property

𝑃𝑎𝑟𝑡𝑦 and 𝑆𝑡𝑢𝑑𝑦 are marginally independent 
• 𝑃𝑎𝑟𝑡𝑦 ⊥ 𝑆𝑡𝑢𝑑𝑦

However, local Markov property does not support 
• 𝑃𝑎𝑟𝑡𝑦 ⊥ 𝑆𝑡𝑢𝑑𝑦 | 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒
• 𝑇𝑎𝑏𝑠 ⊥ 𝑃𝑎𝑟𝑡𝑦

But 𝑃𝑎𝑟𝑡𝑦 and 𝑇𝑎𝑏𝑠 are independent given 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒

DAVIDE BACCIU - AID COURSE 20

Definition (Local Markov property)

Each node / random variable is conditionally 
independent of all its non-descendants given a joint 
state of its parents 

𝑌𝑣 ⊥ 𝑌𝑉\ch 𝑣 |𝑌𝑝𝑎 𝑣  for all 𝑣 ∈ 𝑉 



Joint Probability Factorization
An application of Chain rule and Local Markov Property
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𝑃 𝑃𝐴, 𝑆, 𝐻, 𝑇, 𝐶 =
𝑃 𝑃𝐴 · 𝑃 𝑆 𝑃𝐴 · 𝑃 𝐻 𝑆, 𝑃𝐴 · 𝑃 𝑇 𝐻, 𝑆, 𝑃𝐴 · 𝑃 𝐶 𝑇, 𝐻, 𝑆, 𝑃𝐴

    = 𝑃 𝑃𝐴 · 𝑃 𝑆 · 𝑃 𝐻 𝑆, 𝑃𝐴 · 𝑃 𝑇 𝐻 · 𝑃 𝐶 𝐻

1. Pick a topological ordering of nodes 

2. Apply chain rule following the order 

3. Use the conditional independence 
assumptions



(Ancestral) Sampling of a BN
A BN describes a generative process for observations 
1. Pick a topological ordering of nodes 
2. Generate data by sampling from the local conditional 

probabilities following this order 
Generate 𝑖-th sample for each variable 𝑃𝐴, 𝑆, 𝐻, 𝑇, 𝐶
1. 𝑝𝑎𝑖 ∼ 𝑃 𝑃𝐴
2. 𝑠𝑖 ∼ 𝑃 𝑆
3. ℎ𝑖 ∼ 𝑃 𝐻 𝑆 = 𝑠𝑖 , 𝑃𝐴 = 𝑝𝑎𝑖

4. 𝑡𝑖 ∼ 𝑃 𝑇 𝐻 = ℎ𝑖

5. 𝑐𝑖 ∼ 𝑃 𝐶 𝐻 = ℎ𝑖
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Conditional Independence in Bayesian 
Networks
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There exist three fundamental substructures that determine the 
conditional independence relationships in a Bayesian Network.

• Tail-to-Tail (Fork, “Common Cause”)

• Head-to-Tail (Chain, “Causal Effect”)

• Head-to-Head (Collider, “Common Effect”)

Fundamental BN structures
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Tail-to-Tail Connections
• Corresponds to 

𝑃 𝑌1, 𝑌3 𝑌2 𝑃(𝑌2) = 𝑃 𝑌1 𝑌2 𝑃 𝑌3 𝑌2 𝑃(𝑌2)

• If 𝑌2 is unobserved then 𝑌1 and 𝑌3 are 
marginally dependent 

𝑌1 𝑌3

• If 𝑌2 is observed then 𝑌1 and 𝑌3 are 
conditionally independent 

𝑌1 ⊥ 𝑌3|𝑌2
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When 𝑌2 in observed is said to block the path from 𝑌1 to 𝑌3



Head-to-Tail Connections
• Corresponds to 

P(Y1, Y2, Y3) = P Y1 𝑃 Y2 Y1 P Y3 Y2

= P Y1 Y2 P Y3 Y2 P(Y2)

• If 𝑌2 is unobserved then 𝑌1 and 𝑌3 are 
marginally dependent Type equation here.

𝑌1 𝑌3

• If 𝑌2 is observed then 𝑌1 and 𝑌3 are 
conditionally independent 

𝑌1 ⊥ 𝑌3|𝑌2
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Observed 𝑌2 blocks 
the path from 𝑌1 to 𝑌3



𝑌2

Head-to-Head Connections
• Corresponds to 

𝑃 𝑌1, 𝑌2, 𝑌3 = 𝑃 𝑌1 𝑃 𝑌3 𝑃 𝑌2 𝑌1, 𝑌3

• If 𝑌2 is observed then 𝑌1 and 𝑌3 are 
conditionally dependent 

𝑌1 𝑌3|𝑌2

• If 𝑌2 is unobserved then 𝑌1 and 𝑌3 are 
marginally independent 

𝑌1 ⊥ 𝑌3
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If any 𝒀𝟐 descendants is observed it unlocks the path



Let r = (Y1 ⋯ Y2) be an undirected path between Y1 and Y2.

The path r is blocked by a set Z if one of the following holds:

• r contains a fork (tail-to-tail) Yi ← Yc → Yj such that Yc ∈ Z, or

• r contains a chain (head-to-tail) Yi → Yc → Yj such that Yc ∈ Z, or

• r contains a collider (head-to-head) Yi → Yc ← Yj such that neither Yc nor 
its descendants are in Z.

Blocked Path
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d-Separation

DAVIDE BACCIU - AID COURSE 29

Definition (d-separated path)

Let 𝑟 = 𝑌1 · · · 𝑌2 be an undirected path between 𝑌1 and 𝑌2, then 𝑟 is d-
separated by 𝑍 if there exist at least one node 𝑌𝑐 ∈ 𝑍 for which path 𝑟 is 
blocked.



d-Separation
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Definition (d-separation)

Two nodes 𝑌𝑖 and 𝑌𝑗 in a BN 𝒢 are said to be d-separated by 𝑍 ⊂ 𝒱 (denoted by 
𝐷𝑠𝑒𝑝𝒢(𝑌𝑖 , 𝑌𝑗|𝑍) if and only if all undirected paths between 𝑌𝑖 and 𝑌𝑗 are d-
separated by 𝑍



Markov Blanket
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○ The Markov Blanket Mb(Y) of a node Y is the 
minimal set of vertices that shield the node from 
the rest of the Bayesian Network.

○ In a DAG, the Markov Blanket of Y contains
● Its parents Pa(Y)
● Its children Ch(Y)
● Its children's parents Pa(Ch(Y))

○ The behavior of a node can be completely 
determined and predicted from the knowledge 
of its Markov Blanket.



Learning in Bayesian Networks
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Learning with Bayesian Networks 
Structure

Fixed Structure Fixed Variables

D
at

a C
o

m
p

le
te

Naive Bayes 
Calculate Frequencies (ML)

Discover dependencies 
from the data 

Structure Search 
Independence tests

In
co

m
p

le
te

Latent variables 
EM Algorithm (ML) 

MCMC, VBEM (Bayesian)

Difficult Problem 
Structural EM

Parameter Learning Structure Learning
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Learning Parameters on a Simple Bayesian 
Network

The Naive 
Bayes Classifier

𝑃 𝐶, X1, … , XL = 𝑃(𝐶) ෑ

𝑖=1

L

𝑃(X𝑖|𝐶)

The naïve independence assumption
• Input features 𝑌i are independent 

given the class 

Learning entails finding the values 
of 𝑃(𝐶) and 𝑃(X𝑖|𝐶) (for all i)
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Naive Bayes – Maximum Likelihood 
Learning
• Consider 𝑁 observed training pairs 𝒅 = 𝒙𝑛, 𝑐𝑛 𝑛=1:𝑁 s.t. 𝒙𝑛 =<

𝑥1𝑛, . . . , 𝑥𝐿𝑛 >

• The model likelihood is the probability of the data 𝒅 given the model 
parameters 𝜃 = 𝑃 𝐶 , 𝑃 𝑋1 𝐶 , … , 𝑃 𝑋𝐿 𝐶 (for Naïve Bayes on discrete data)

𝑃 𝒅 𝜃 = ෑ

𝑛=1

𝑁

𝑃 𝑐𝑛 ෑ

𝑖=1

𝐿

𝑃 𝑥𝑖𝑛 𝑐𝑛

• Learning equations for the model are derived by maximization of the logarithm 
of the likelihood

𝜃∗ = max
𝜃

log 𝑃 𝒅 𝜃

• For a model as simple as the Naïve Bayes this optimization can be easily 
computed and closed form update equations are obtained
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Example of Naive Bayes Learning Rules
It is all about counting frequencies of events occurring (this is true in general for 
maximum-likelihood learning with discrete variables)

• 𝑁 𝑘 → Number of samples in class k

• 𝑁𝑖𝑠(𝑘) → Number of samples in class k where the i-th attribute has value s

𝑃(𝐶 = 𝑘) =
𝑁 𝑘

𝑁

𝑃 𝑋𝑖 = 𝑠 𝐶 = 𝑘 =
𝑁𝑖𝑠(𝑘)

σ
𝑠=1
𝑆𝑙 𝑁𝑖𝑠(𝑘)

In general, everything works this smoothly whenever your 
Bayesian Network does not contain non-observable variables
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Bayesian Networks and Hidden Variables
• Hidden variables are introduced to 

explain complex relationships between 
observed data in simple ways

• Allow to apply conditional 
independence simplifications

𝑃 X1, … , XL ≈ 

𝑧

𝑃(𝑍) ෑ

𝑖=1

L

𝑃(X𝑖|𝑍)

• Learning becomes more complex because 
we do not have ground truth observations 
for 𝑍
• We need to make probabilistic hypotheses 

on Z to learn the model parameters 𝜃

𝒁

Hidden variable 
(the probabilistic 
equivalent of a 
hidden neuron)
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Bayesian Networks in Healthcare
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Why Bayesian Networks in Healthcare

• We are not 100% certain that the patient has pneumonia ⇒
Reasoning with uncertainty (a probabilistic approach)

• You know that some symptoms connect with diagnosis ⇒ Fitting 
prior knowledge into the model 

• X given that Y occurs ⇒ Conditional probabilities and 
independence

• How did you come up with the diagnosis? ⇒ Interpretability
requirements

You would like to determine how likely the patient has pneumonia 
given that the patient has a cough, a fever, and difficulty breathing
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A Bayesian 
Network for 
Pneumonia

Aronsky, D. and Haug, P.J., Diagnosing community-acquired pneumonia with a Bayesian 
network, In: Proceedings of the Fall Symposium of the American Medical Informatics 

Association, (1998) 632-636.
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Studying simultaneous symptoms in patients 
with advanced cancer
van der Stap et al, Scientific Reports 

(2022)
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From an Inferential 
Perspective

Fixed 
evidential 

data
Inferred non-

observed 
simultaneous 

symptom
van der Stap et al, Scientific Reports 

(2022)
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A View on 
Data/Phenomena 
Interpretation

Razbek et al, Nature (2024)

Understanding factors contributing to progression of 
metabolic syndrome (MetS)
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A View on 
Data/Phenomena 
Interpretation

Razbek et al, Nature (2024)

Conditional probability tables learned by 
maximum likelihood
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Visually Comparing Differences Based on 
Changing Risk Factors

Razbek et al, Nature (2024)

Vs
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Subpopulations in Bayesian Networks
In multimorbidity problems 
datasets are typically 
collected from different 
sources
• family practices
• sub-populations (social, 

geographic,  demographic)
We need to correct for this or 
we will have spurious 
interactions between disease 
variables

The gender influenced estimate 
of height in linear regression!

Lappenschaar et al, Artificial Intelligence in Medicine (2013)
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Multilevel Bayesian Networks
Indicator variables(introduced in the 
model) capturing separation in 
subpopulations Observed shared 

level variables 
capturing 
subpopulation 
splitting (e.g. gender)

Outcome variables 
(e.g. diagnoses)

Variables not influenced 
by subpopulations

Lappenschaar et al, Artificial Intelligence in Medicine (2013)
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Multilevel BNs for multi-
disease prediction

Different subpopulation 
induced by the different 
practices (indicator) 
collecting data
Different practices 
observable in their urbanity 
(level variable) 

Lappenschaar et al, Artificial Intelligence in Medicine (2013)
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Modular Bayesian Networks
Define Bayesian networks over groups of features to improve interpretability

groups can be known 
or inferred by 
clustering

Becker et al, Plos Computational Biology (2021)

DAVIDE BACCIU - AID COURSE 49



Modular BNs - Steatosis

Becker et al, Plos Computational Biology (2021)
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Modular BNs - Hypertension

Becker et al, Plos Computational Biology (2021)
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Population-wide Bayesian Networks

Time of Release

Person Model

Anthrax Release

Location of Release

Person Model

Global nodes

Interface nodes

Each person in 
the populationPerson Model

Cooper  et al, Uncertainty in AI (2012)
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Example of 
population-wide 
Bayesian Network

Anthrax Release

Location of ReleaseTime Of Release

Anthrax Infection

Home Zip

Respiratory 

from Anthrax

Other ED

Disease

GenderAge Decile

Respiratory CC

From Other

Respiratory

CC

Respiratory CC

When Admitted

ED Admit

from Anthrax

ED Admit 

from Other

ED Admission

Anthrax Infection

Home Zip

Respiratory 

from Anthrax

Other ED

Disease

Gender

Age Decile

Respiratory CC

From Other

Respiratory

CC

Respiratory CC

When Admitted

ED Admit

from Anthrax

ED Admit 

from Other

ED Admission

…

…

Cooper  et al, Uncertainty in AI (2012)

DAVIDE BACCIU - AID COURSE 53



Steps to Use Bayesian Networks

• Design the structure of the network by identifying variable (nodes) 
associations (edges)

• Fit the parameters of the Bayesian Network by maximum 
likelihood

• Make predictions (e.g. diagnose a disease)
• Sample observations (e.g. complete missing variables)
• Reason on associations
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Next lecture

• Design Learn the structure of the network by identifying variable 
(nodes) associations (edges)

• Fit the parameters of the Bayesian Network by maximum 
likelihood

• Make predictions (e.g. diagnose a disease)
• Sample observations (e.g. complete missing variables)
• Reason on associations causal relationships
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Wrap-up
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Take home lessons
• Bayesian network represent asymmetric relationships between RV and 

conditional probabilities in compact way
• Allow to reason graphically on probabilistic concepts: we can easily map 

inference and conditional independence tests into graph-based algorithms
• Learning is easily achieved by maximum likelihood when all RV are observed 
• Useful features for healthcare applications
• Reasoning under uncertainty
• Integration of prior knowledge
• Interpretability

• Very parametric: only as good as your ability to take design choices 
(distribution, independence,… ) that are close to the underlying data/task 
process
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Next lecture

• Design Learn the structure of the network by identifying variable 
(nodes) associations (edges)

• Fit the parameters of the Bayesian Network by maximum 
likelihood

• Make predictions (e.g. diagnose a disease)
• Sample observations (e.g. complete missing variables)
• Reason on associations causal relationships
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