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Lecture Outline

• Sequential data in healthcare
• Dealing with sequential data and learning tasks definition
• Physiological timeseries
• Electronic health records

• Recurrent neural networks (RNNs)
• Main intuition and learning issue in the vanilla model
• Gated RNNs
• Bidirectional models
• Convolutional RNNs

• RNNs in healthcare applications (with a bonus track on models)

DAVIDE BACCIU - AID COURSE 2



Sequential Data (in Healthcare)
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Sequences
• Ordered series of observations of variable length 
• Each element of the sequence is (possibly) a vector (multivariate)
• Sequence elements can be sampled at irregular times

4

Inductive Bias

The element at time 𝑡 in the sequence may depend only on its (more or less) recent past
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Kinds of Sequential Data

• When ordering is given by time, our sequence is also 
known as a timeseries

• Numerical sequences: each element is a scalar (e.g. 
heartrate)

• Vectorial sequences: each element is a vector (e.g. 
ECG/EEG)

• Matrix sequences: each element is a matrix (e.g. an fMRI)
• Textual sequences: each element is the encoding of a 

symbolic item (e.g. genomic sequences)
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Physiological Timeseries
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Probes used to collect vital signs data from an 
infant in ICU

ECG

Blood 
pressure

Pulse 
oximeter

Temperature

Transcutaneous 
probe

Peripheral
Temperature

Rapidly varying HR 
timeseries (normal)

Source:Quinn et al., TPAMI 2008 



The 
Challenging 
Nature of 
Physiological 
Timeseries (I)
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Source: Physionet

https://physionet.org/content/challenge-2017/1.0.0/


The Challenging Nature of Physiological 
Timeseries (II)
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Source:Quinn et al., TPAMI 2008 

Blood 
pressure

Oxygen

Probe recalibration

Probe drop

Blood 
sample



Fantastic 
timeseries 
and where to 
find them
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In Electronic Health 
Records (EHR)!

Source: Rajkomar et al, Nature 
2018



Electronic 
Health Record
Patient chart in digital 
form, containing medical 
and treatment history 
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Patient information 
stored over time

Nursing notes

Medications

Diagnoses and 
physician notes

Imaging and 
lab reports

Source: Rajkomar et al, Nature 
2018



EHR Example Dataset – MIMIC-III/IV

• Open-source database of de-
identified data for 65,000 
patients admitted to an ICU and 
over 200,000 patients admitted 
to the emergency department

• All patients admitted to critical 
care units at Beth Israel 
Deaconess Medical Center 
(Boston, MA) between 2008 -
2019
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Johnson et al, Nature 2023



Type of sequential ML tasks: sequence 
prediction 
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The entire sequence x is associated with a single target y

ICU 
admission

ICU 
discharge

Patient 
condition



Type of sequential ML tasks: element-by-
element prediction
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Given a sequence x generate a prediction 𝑦<𝑡> for each element

ICU 
admission

ICU 
discharge

Likelihood of 
an adverse 

event 
occurring



Type of sequential ML tasks: sequence-to-
sequence
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Given a sequence x generate an output sequence 𝒚 (of different 
length and not synchronized)



Dealing with Sequences in Neural Networks
Variable size data describing 
sequentially dependent 
information 

Neural models need to 
capture dynamic context 𝑐𝑡 to 
perform predictions

Recurrent Neural Network

● Vanilla adaptive models (Elman, SRN, …)

● Randomized approaches (Reservoir Computing)

● Gated recurrent networks

…
𝑡 = 0 𝑡 = 1 𝑡 = 𝑁𝑡 = 2

𝑐3
𝑐𝑁



Recurrent Neural Networks (RNN)
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The intuition

We apply the same neural 
network to each element of the 
sequence (using weight 
sharing)
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𝒉𝑡 = tanh(𝑾𝒊𝒏𝒙𝑡)



The intuition

We apply the same neural 
network to each element of the 
sequence (using weight 
sharing)
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𝒉𝑡 = tanh(𝑾𝒊𝒏𝒙𝑡 + 𝑾𝒉𝒉𝑡−1)

We add a new input 𝒉𝑡−1 which 
captures the information from 
the past inputs of the network



Interpreting the network state 𝒉𝑡−1

• 𝒉𝑡−1 encodes the information related to the elements of the 
sequence 𝒙1 … 𝒙𝑡−1 processed before the current one (𝒙𝑡)

• It acts like a state/memory that summarizes the relevant 
information the network has processed up to that point

• The RNN flow in summary
• We combine the current element of the sequence 𝒙𝑡 with input weights
• We combine the state 𝒉𝑡−1 with recurrent weights
• We sum the two results and apply an activation function
• We pass the result to the next layer
• For the first element 𝒙1, the state 𝒉0 is a vector of zeros
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Recursive RNN model
𝑦𝑡

𝑓𝑊
𝑾ℎ

𝑾𝑖𝑛

𝑾𝑜𝑢𝑡

Typically all 
dense (fully-
connected) 
layers

Describes the network 
structure and 
parameterization prior to 
unfolding (i.e. applying 
the weight sharing 
copies) on the actual 
sequence

This is not necessarily 
computed for all t
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Unfolding RNN (Forward Pass)
By now you should be familiar with the concept 
of model unfolding/unrolling on the data

…𝑥0 𝑥1 𝑥2 𝑥𝑡

model

data

unfolding

𝑞−1

memory 
encoding

Map an arbitrary length 
sequence 𝑥0. . 𝑥𝑡 to fixed-
length encoding 𝒉𝑡

Graphics credit 
@ colah.github.io

𝑓𝑊 𝑓𝑊 𝑓𝑊 𝑓𝑊

𝑓𝑊
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Vanilla RNN

∑

𝒙𝑡

𝒉𝑡𝒉𝑡−1

𝑾𝑖𝑛
𝑖 𝒙𝑡

𝑾ℎ
𝑖 𝒉𝑡−1

𝑔𝑡
𝑖

ℎ𝑡
𝑖

𝒈𝑡 𝒉𝑡−1, 𝒙𝑡 = 𝑾ℎ𝒉𝑡−1 + 𝑾𝑖𝑛𝒙𝑡 + 𝐛h

𝒉𝑡 = 𝑡𝑎𝑛ℎ(𝒈𝑡)

𝒚𝑡 = 𝑓(𝑾𝑜𝑢𝑡𝒉𝑡 + 𝒃𝑜𝑢𝑡)

𝑓𝑊
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Training RNNs – Computational Graph
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Source: S. Yeung, BIODS 220



Training RNNs – Computational Graph
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Same set of weights reused across time steps => gradient needs to be taken 
w.r.t. all weight copies

Source: S. Yeung, BIODS 220



Training RNNs – Computational Graph
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When predicting at each time step, adjust based on the error committed at 
each time step (i.e. sum the errors across time)

Source: S. Yeung, BIODS 220



Training RNNs – Computational Graph
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For sequence-levels tasks, have one error (and one gradient) only at the end

We will also see 
more articulated 
forms of output 
predictions later on

Source: S. Yeung, BIODS 220



Backpropagation Through Time (BPTT)
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Forward through 

entire sequence to

compute loss, then

(in principle)

backward through

entire sequence to 
compute gradient

Source: S. Yeung, BIODS 220



Truncated Backpropagation Through Time
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Gradient tends to vanish (or 
explode) as you propagate it 
through many time steps 
backwards (for numerical 
reasons beyond the scope of 
this course)

Source: S. Yeung, BIODS 220



Truncated Backpropagation Through Time
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Run BPTT on 
chunks of the 
sequence rather 
than on the full 
sequence

Source: S. Yeung, BIODS 220



Truncated Backpropagation Through Time
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Deep learning APIs allow you to 
choose the size of the time 
window for truncated 
propagation

Source: S. Yeung, BIODS 220



Learning to Encode Input History
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Hidden state 𝒉𝑡 summarizes information on the history of the input 

signal up to time 𝑡

𝑓𝑊 𝑓𝑊 𝑓𝑊 𝑓𝑊𝑓𝑊



Learning Long-Term Dependencies is Difficult
When the time gap between the observation and the state grows 
there is little residual information of the input inside of the memory  

𝑓𝑊 𝑓𝑊 𝑓𝑊 𝑓𝑊 𝑓𝑊 𝑓𝑊
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Gated Recurrent Networks
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A motivating example

• Let's imagine we need to predict the next word in this sentence:
I lived in England when I was little, until I was ten years old. Then I moved 
with my family. I speak fluently...

• It’s clear that if I want to predict the next word in this sentence 
(English), I need to remember having seen England earlier

• The problem with standard RNNs is that this dependency might be 
lost, so modifications to the standard RNN are needed to solve 
this issue
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Long Short Term Memory (LSTM) – The first 
gated RNN
• The idea behind an LSTM is to introduce a memory c, a vector that 

holds a representation of elements (no matter how far back) that the 
current output/state might depend on

• In a simple RNN, the memory c coincides with the state h and it 
contains all past input elements
• By trying to retain “everything”, the network tends to “forget” the more distant 

elements (due to the vanishing gradient problem)

• The key idea in LSTMs is that, at each step, the network decides 
whether and how much to update the memory

• This update is managed by gates that learn how to combine the 
memory with the previous state to produce the current state and 
output.
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LSTM Gates

• The forget gate tells us which parts of the memory to 
erase

• The update gate tells us which parts of the memory to 
update

• The output gate tells us which parts of the memory are 
used to compute the output and the current state

• The activation of a gate returns vectors with values 
between 0 and 1, where 0 = “throw away” and 1 = “keep”
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LSTM Design

S. Hochreiter, J. Schmidhuber, Long short-term 
memory". Neural Computation, Neural Comp. 1997

+

ℎ𝑡
ℎ𝑡−1

𝑔𝑡

Let's start from the 
vanilla RNN unit

𝒙𝑡
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LSTM Design – Step 1
Introduce a memory 𝑐𝑡

Combines past internal 
state 𝑐𝑡−1 with current 
input 𝒙𝑡

+

ℎ𝑡

+

𝑐𝑡

𝑔𝑡

ℎ𝑡−1

𝑐𝑡−1

𝒙𝑡
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LSTM Design – Step 2 (Gates)
Input gate 
Controls how inputs 
contribute to the 
internal state

𝐼𝑡(𝑥𝑡 , ℎ𝑡−1)

Logistic sigmoid

𝒙𝑡

ℎ𝑡
ℎ𝑡−1

+𝑐𝑡−1

𝑐𝑡

𝑔𝑡

+

×

+
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LSTM Design – Step 2 (Gates)
Forget gate
Controls how past 
internal state 𝑐𝑡−1

contributes to 𝑐𝑡

𝐹𝑡(𝑥𝑡, ℎ𝑡−1)

Logistic sigmoid

𝒙𝑡

ℎ𝑡
ℎ𝑡−1

+𝑐𝑡−1

𝑐𝑡

𝑔𝑡

+

×

+

×

+
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LSTM Design – Step 2 (Gates)
Output gate 
Controls what part of 
the internal state is 
propagated out of the 
cell

𝑂𝑡(𝑥𝑡, ℎ𝑡−1)

Logistic sigmoid

𝒙𝑡

ℎ𝑡
ℎ𝑡−1

+𝑐𝑡−1

𝑐𝑡

𝑔𝑡

+

×

+

×

+

×

+
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1) Compute activation of input and forget gates

 𝑰𝑡 = 𝜎(𝑾𝐼ℎ𝒉𝑡−1 + 𝑾𝐼𝑖𝑛𝒙𝑡 + 𝐛I)

 𝑭𝑡 = 𝜎(𝑾𝐹ℎ𝒉𝑡−1 + 𝑾𝐹𝑖𝑛𝒙𝑡 + 𝐛F)

2) Compute input potential and internal state

 𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝑾ℎ𝒉𝑡−1 + 𝑾𝑖𝑛𝒙𝑡 + 𝐛h)

 𝒄𝑡 = 𝑭𝑡⨀𝒄𝑡−1 + 𝑰𝑡⨀𝒈𝑡

3) Compute output gate and output state

 𝑶𝑡 = 𝜎(𝑾𝑂ℎ𝒉𝑡−1 + 𝑾𝑂𝑖𝑛𝒙𝑡 + 𝐛O)

 𝒉𝑡 = 𝑶𝑡⨀𝑡𝑎𝑛ℎ(𝒄𝑡)

LSTM in Equations

⨀ element-wise 
multiplication

Training works by BPTT 
as in vanilla RNNs 
(including truncation)
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Deep LSTM

LSTM 
CELL

LSTM 
CELL

LSTM 
CELL

𝑦𝑡𝑥𝑡

𝒉𝑡
1

𝒉𝑡
2

𝒉𝑡
3

𝒉𝑡−1
1

𝒉𝑡−1
2

𝒉𝑡−1
3

LSTM layers extract information at increasing levels of abstraction 
(enlarging context)
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Bidirectional LSTM (BiLSTM)
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• We combine (sum, 
average) the two 
directions before the 
output

• This is more powerful, as 
it takes the entire 
sequence into account to 
make a prediction

• But the entire sequence 
must be available (which 
is not always possible)



Gated Recurrent Unit (GRU)

C. Kyunghyun et al, Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, EMNLP 2014

Reset acts directly on output state (no 
internal state and no output gate)

𝒉𝑡 = (1 − 𝒛𝑡) ⨀ 𝒉𝑡−1+ 𝒛𝑡⨀ 𝒉𝑡

𝒉𝑡 = 𝑡𝑎𝑛ℎ(𝑾ℎℎ(𝒓𝑡⨀ 𝒉𝑡−1) + 𝑾ℎ𝑖𝑛𝒙𝑡 + 𝐛h)

Reset and update gates when coupled 
act as input and forget gates

𝒛𝑡 = 𝜎(𝑾𝑧ℎ𝒉𝑡−1 + 𝑾𝑧𝑖𝑛𝒙𝑡 + 𝐛z)

𝒓𝑡 = 𝜎(𝑾𝑟ℎ𝒉𝑡−1 + 𝑾𝑟𝑖𝑛𝒙𝑡 + 𝐛r)
𝒙𝑡

ℎ𝑡

ℎ𝑡−1

ℎ𝑡

×

+

+

+

+
𝑟𝑡

𝑧𝑡
×

×

−1
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Convolutional Recurrent Networks
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Convolutional neural networks on timeseries
It should not be surprising to think that convolutional filters can be 
defined to be mono-dimensional for their use on timeseries
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2x1 convolutions

Stacking  
convolutional 
layers

time



Temporal Convolutional Networks (TCNs)
The return of dilated convolutions
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You can reuse all your CNN building 
blocks and knowledge here
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Single 
lead 
ECG

Predicting Sinus rhythm (SINUS) Vs Atrial Fibrillation
for a total of 14 classes 

Source: Arxiv

https://arxiv.org/pdf/1707.01836


To get you cardiologist level predictions
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Source: Arxiv

https://arxiv.org/pdf/1707.01836


Healthcare Applications
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LSTM for clinical timeseries (and risk prediction) 
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• LSTMs vs logistic regression 
in predictive tasks on MIMIC-
III

• Used a subset of 17 clinical 
variables in input
• All required some imputation

Four predictive tasks:
• in-hospital mortality
• decompensation
• length-of-stay
• Phenotype classification

Harutyunyan et al, Nature Sci. Data 2019



In-hospital mortality task

• Predicting in-hospital 
mortality based on the 
first 48 hours of an ICU 
stay 

• Binary classification task 

• AUC-ROC as metric

DAVIDE BACCIU - AID COURSE 53

Harutyunyan et al, Nature Sci. Data 2019



Decompensation prediction task

• Decompensation prediction (as mortality in the next 24hours)

• Multiple binary classification task 

• AUC-ROC as metric
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Harutyunyan et al, Nature Sci. Data 2019



Length-of-stay prediction task

• Remaining time spent in ICU at each hour of stay

• Multiclass task  on 10 classes (one for ICU stays shorter than a day, 7
day-long buckets for each day of the first week, one for stays of over one week 
but less than two, and one for stays of over two weeks)

• Cohen’s linear weighted kappa score
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Harutyunyan et al, Nature Sci. Data 2019



Phenotype classification 
task

• Classifying which of 25 acute care 
conditions are present in each patient ICU 
stay record

• Multilabel classification problem 

• Average AUC-ROC

DAVIDE BACCIU - AID COURSE 56

Harutyunyan et al, Nature Sci. Data 2019



Some interesting insights (and tricks)
• Working with multi-channel data requires a lot of alignment of 

timesteps (subsampling, supersampling and imputation)
• Authors also experimented with channel specific (Bi)LSTMs  (one for each of the 

17 channels)
• Pair each channel with a binary variable (in time) indicating whether the 

specific channel was observed at time step t
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• Multitask learning can help: training the LSTM 
to solve all four task altogether rather than 
independently

• Deep supervision helps on sequence 
prediction tasks
• Use target replication for each time step if it 

makes sense
• Doesn’t work for length-of-stay and 

decompensation



A “less data 
curation” 
approach
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Deasy et al, Scientific Report, 2020

All patient data 
ingested by the 
LSTMDiscretization and 

quantilization to 
reduce the impact 
of noise

Survival prediction in ICU from MIMIC-III data 

Mark missing data 
and do not impute
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Temporal convolutions 
on MIMIC-III tasks

Thanks to the dilation 
factor can gain a 
longer-time insight 
into the history of the 
input signal than 
Gated RNNs, without 
incurring in fading 
gradients 

Bednarsky et al, Scientific Report, 2022



TCN - Good cost-for-performance trade-off
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Bednarsky et al, Scientific Report, 2022



Working with Genomic Sequences

Sequenced 
genetic material
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one-hot 
encoding

neural layers for 
sequences

prediction 
layer



The approach 
can be 
extended also 
to protein
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Although the vocabulary grows and many different representations 
can be thought of (including graph-based ones)

Source: D. Harding-Larsen et al, Biotechnology Advances, 2024



DeepBind
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Convolutional neural 
network for sequences

Predicting scores of whether particular 
proteins will bind to the sequence or not

Alipanahi et al, Nature 2015



DeepBind – Intepreting filters
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Alipanahi et al, Nature 2015



DeepBind – Mutations effect
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Alipanahi et al, Nature 2015

Predict the effect of sequence mutation through 
interpretability techniques



DeepSea

Predict chromatin effects 
of (non-coding) sequence 
alterations with single-
nucleotide 
polimorphisms (SNPs)
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Zhou and Troyanskaya, Nature 2015

Multi-task prediction of 
919 chromatin profiles, 
for each allele (variant)

Convolutional (8x1) and 
pooling (4x1) layers



Bonus Track
What if we don’t 
train this?
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𝒉𝑡 = tanh(𝑾ℎ𝒉𝑡−1 + 𝑾𝑖𝑛𝒙𝑡)

𝑓𝑊

It means that these are initialized 
but not trained!



You get Reservoir Computing
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reservoir

readout 

fixed

trainable

Simple linear layer 
trainable in closed from 
(remember least-mean 
square!) 

High dimensional but 
sparsely connected 
recurrent layer

It works under certain 
conditions concerning the 
eigenvalues of the recurrent 
weight matrix (randomly 
initialized and not learned)



Reservoir Computing – What do I gain?

• Good predictive performance on highly noisy input signals and 
short-term memory tasks

• Computational and memory efficiency
• Trains in seconds (Vs hours/days)
• Even on embedded devices (computation, memory and energy 

constraints)
• Consider physiological monitoring applications

• Comes also in deep learning fashion (and with some adaptivity 
reintroduced in the recurrent layer)

• Can be implemented in hardware (neuromorphic)
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A Reservoir Computing Application
• Automatic assessment of balance skills
• Predict the outcome of the Berg Balance Scale (BBS) clinical test from time-series of

pressure sensors (in 10 secs Vs 10 minutes)
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Wii 
Balance 
Board

BBS



Wrap-up
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Take Home Lessons 
• Recurrent neural networks create a dynamic memory of past inputs which 

influences neural activation besides the current input
• Good inductive bias for sequential data
• Amounts to weight sharing in time

• Learning long-term dependencies can be difficult due to gradient vanish/explosion 
so you need smarter solutions than vanilla RNNs
• Gated RNNs: control memory reading and writing by gates
• Temporal convolution networks: use dilation factor to broaden the scope of how much past a 

neuron can see 
• Reservoir computing: use randomization in place of learning when you have computational 

constraints (and the right task)

• Dealing with physiological timeseries typically requires preprocessing carefully 
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Next Lectures

• Laboratory tutorial (Tuesday)
Next 3 lectures:
• Deep learning fundamentals

• Sequence-to-sequence learning and encoder-decoder architectures
• Neural attention
• Transformers and vision transformers

• Natural language and text data processing
• Learning dense embeddings
• Natural language processing pipeline and tasks
• Language modelling

• Application verticals
• Language models for healthcare
• Dealing with language in HER
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