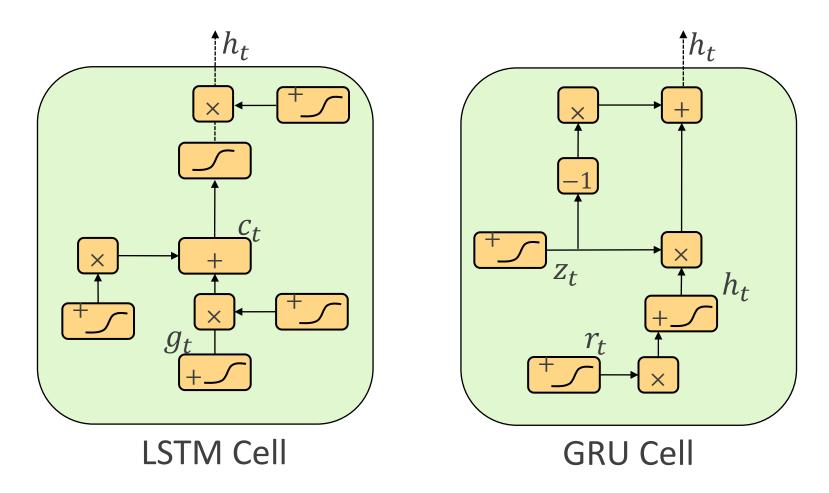
Encoder-Decoder Architectures and Neural Attention

Artificial Intelligence for Digital Health (AID) M.Sc. in Digital Health – University of Pisa Davide Bacciu (davide.bacciu@unipi.it)

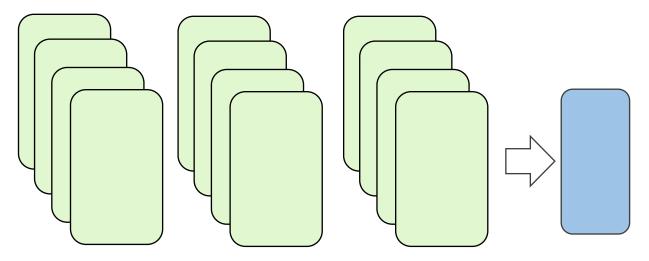
Lecture Outline

- Sequence-to-sequence learning
- Encoder-decoder architectures
- Neural attention
 - Cross-attention
 - Self-attention
- Transformers and vision transformers

Gated RNN Refresher



Graphical Notation for Compositionality



Use a simplified (and overloaded) graphical notation to represent GRNN layers and stacks of GRNN

CELL

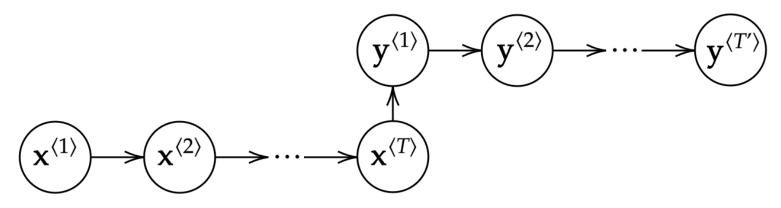
Dealing with Compound Data

- GRNN are excellent to handle size/topology varying data in input
 - How can we handle size/topology varying outputs?
 - Sequence-to-sequence
- Structured data is compound information
 - Efficient processing needs the ability to focus on certain parts of such information
 - Attention mechanism

Sequence Transduction

- A new class of learning problems over sequences
- Input and output are both sequences
 - They may have different lengths
 - They are not-aligned

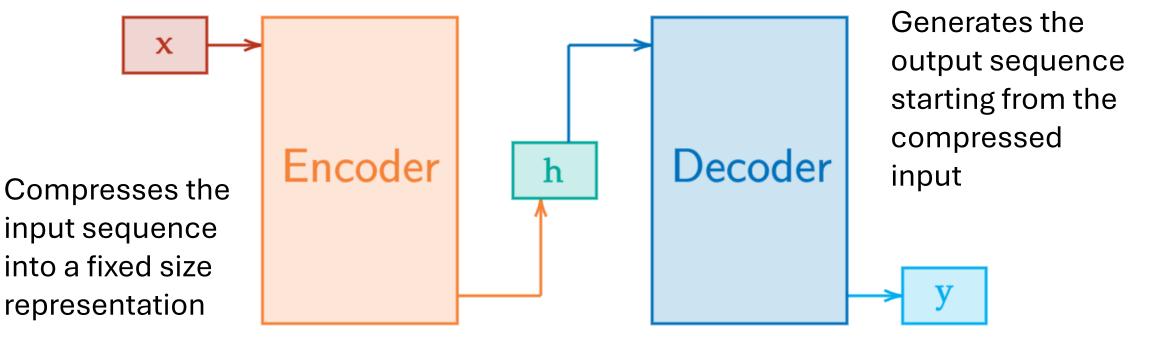
Il gatto è sul tavolo



The cat is on the table

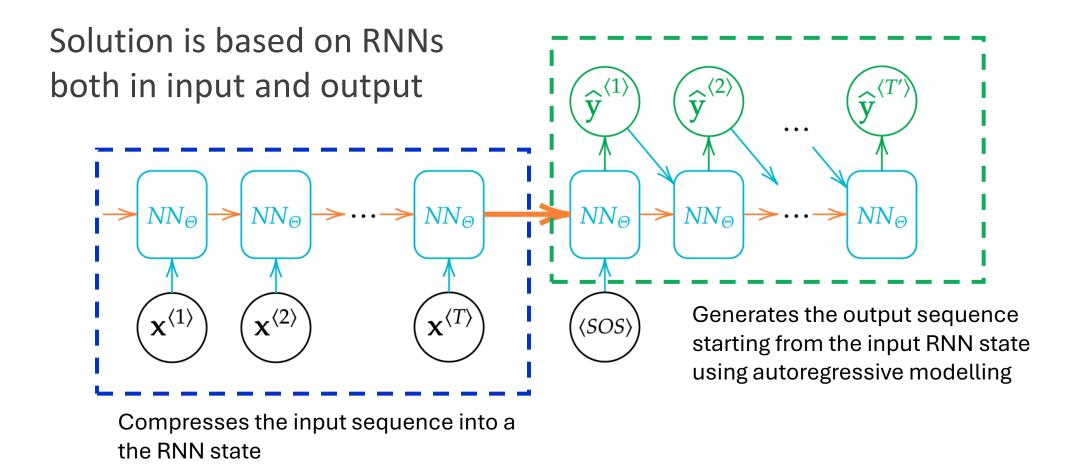
Sequence-to-Sequence Learning

Solution is based on an encoder-decoder scheme



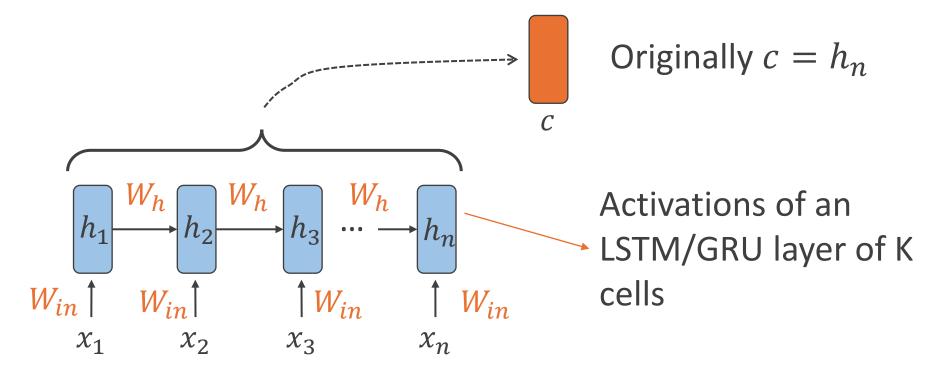
Early Encoder-Decoder Architectures

Recurrent Sequence-to-Sequence Learning

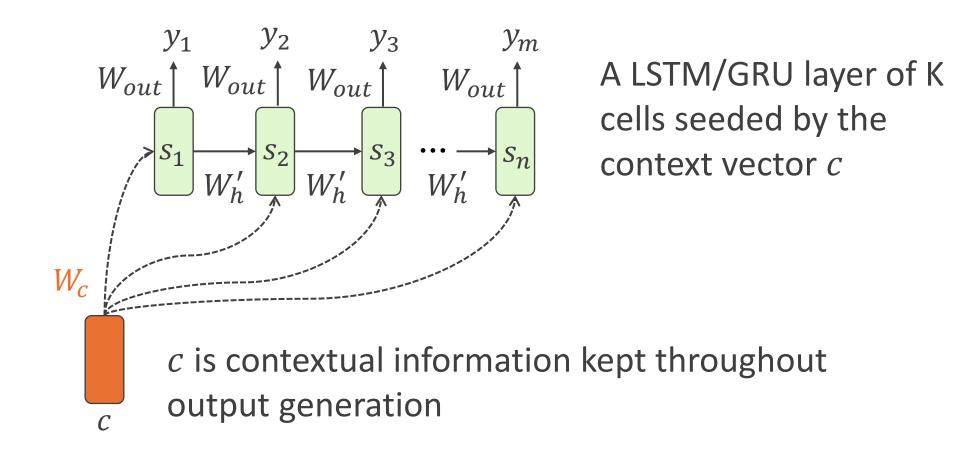


Encoder

Produce a compressed and fixed length representation c of all the input sequence x_1, \ldots, x_n

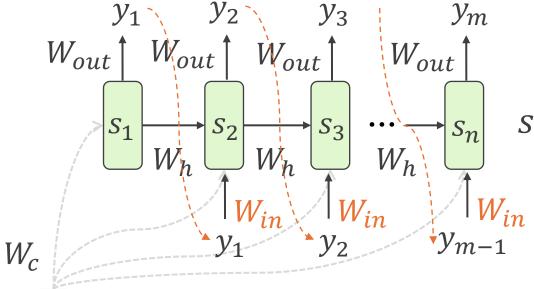


Decoder



Autoregressive Decoding

С

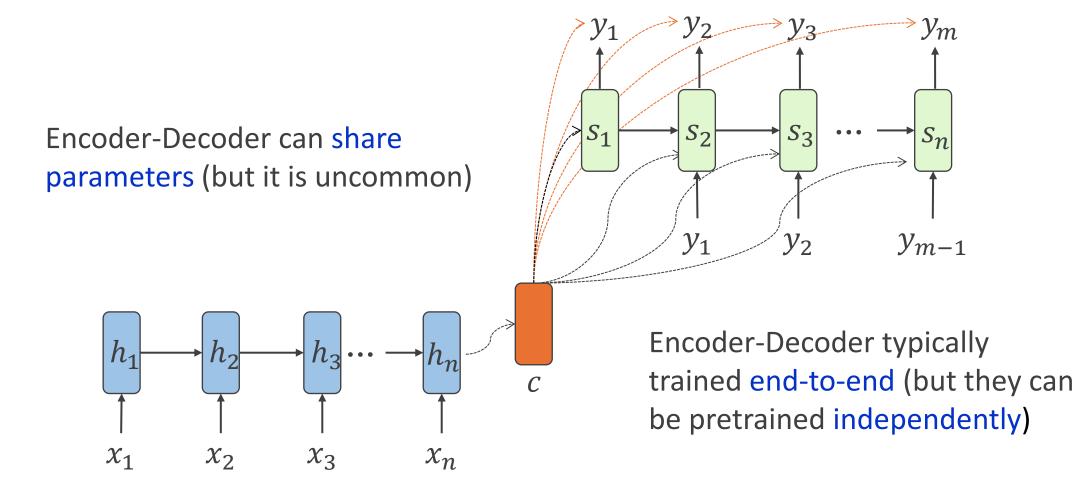


The output at the previous step is used as input to the current step (autoregressive generation)

$$s_i = f(c, s_{i-1}, y_{i-1})$$

At training time we use teacher forcing: current input comes from the ground truth rather than from the previous output (which can be wrong)

Sequence-To-Sequence Learning



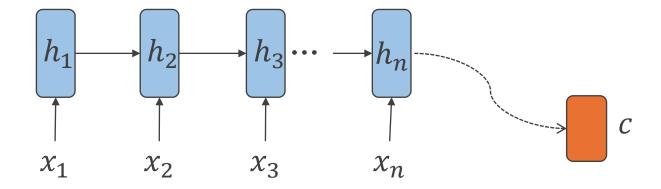
Attention

A Motivating Example

The cat is on the table

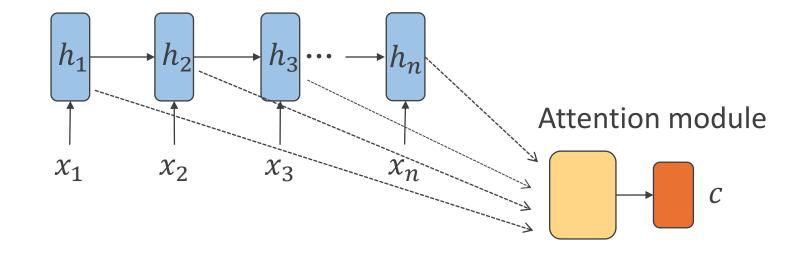
Il gatto è sul tavolo

On the Need of Paying Attention



- Encoder-Decoder scheme assumes the hidden activation of the last input element summarizes sufficient information to generate the output
 - Bias toward most recent past
- Other parts of the input sequence might be very informative for the task
 - Possibly elements appearing very far from sequence end

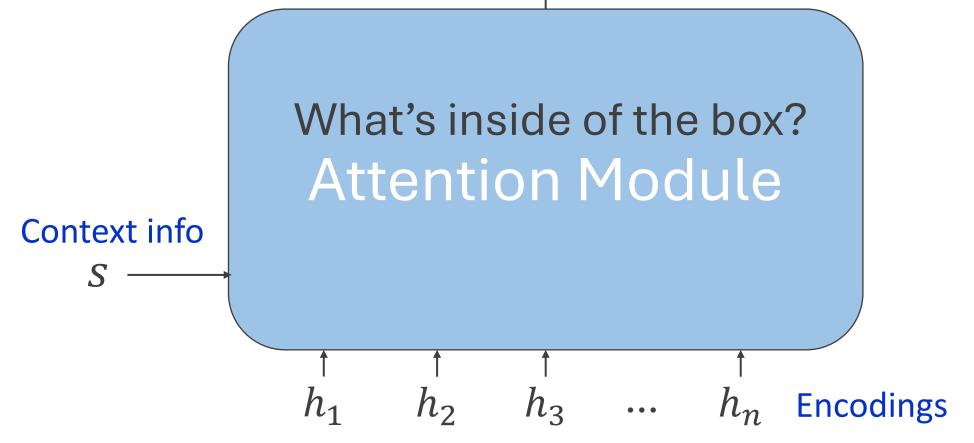
On the Need of Paying Attention



• Attention mechanisms select which part of the sequence to focus on to obtain a good *c*

Attention Mechanisms – Blackbox View

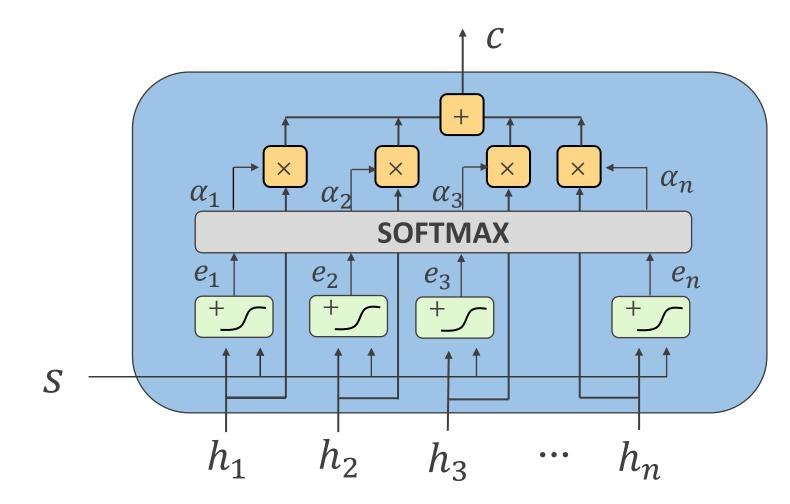
Aggregated seed \uparrow^{C}



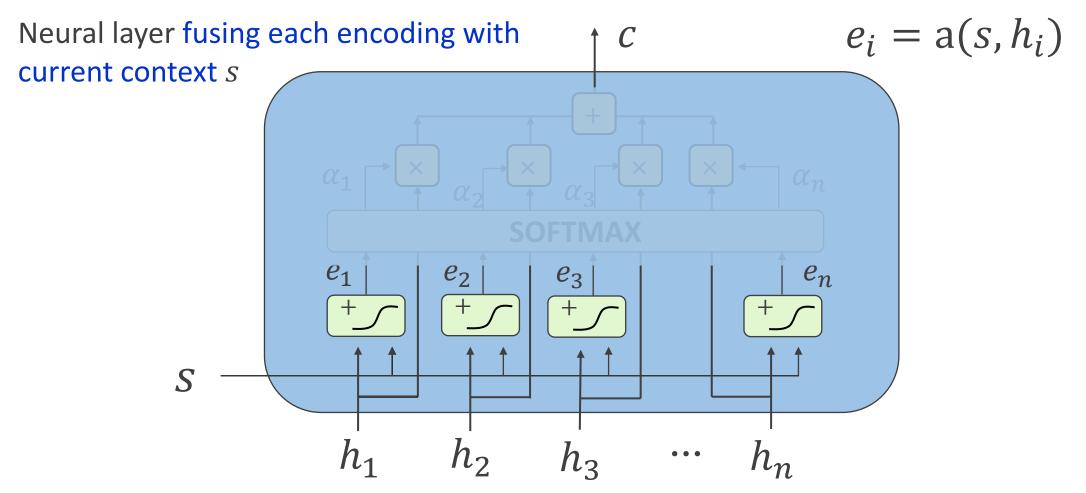
What's inside of the box?

The Revenge of the Gates!

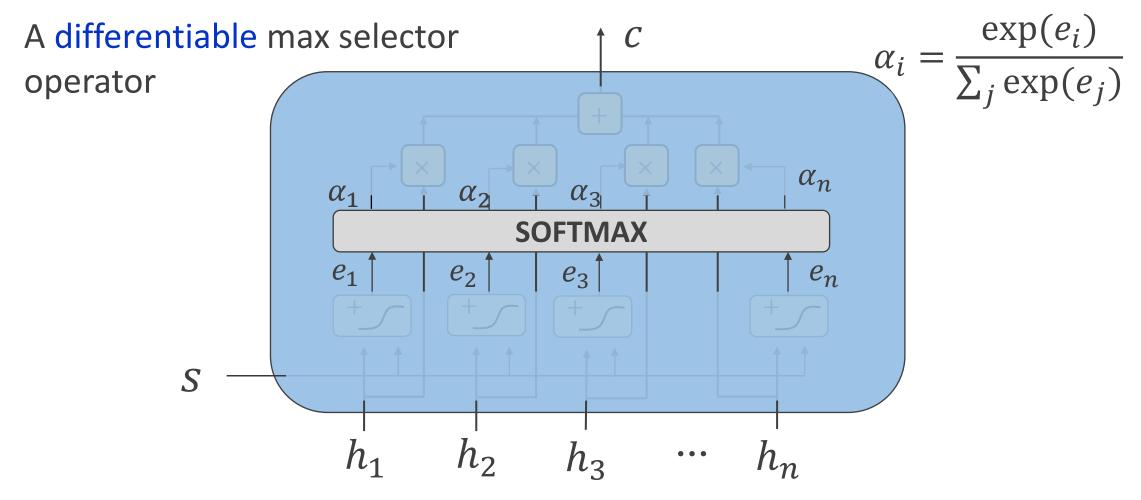
Opening the Box – Cross Attention



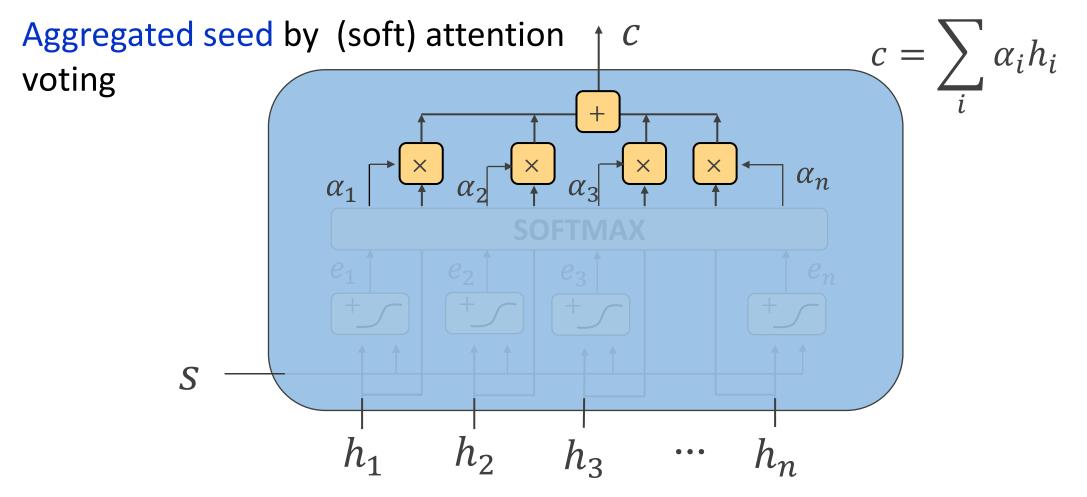
Opening the Box – Relevance



Opening the Box – Softmax



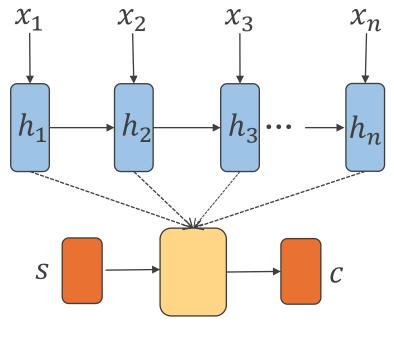
Opening the Box – Voting



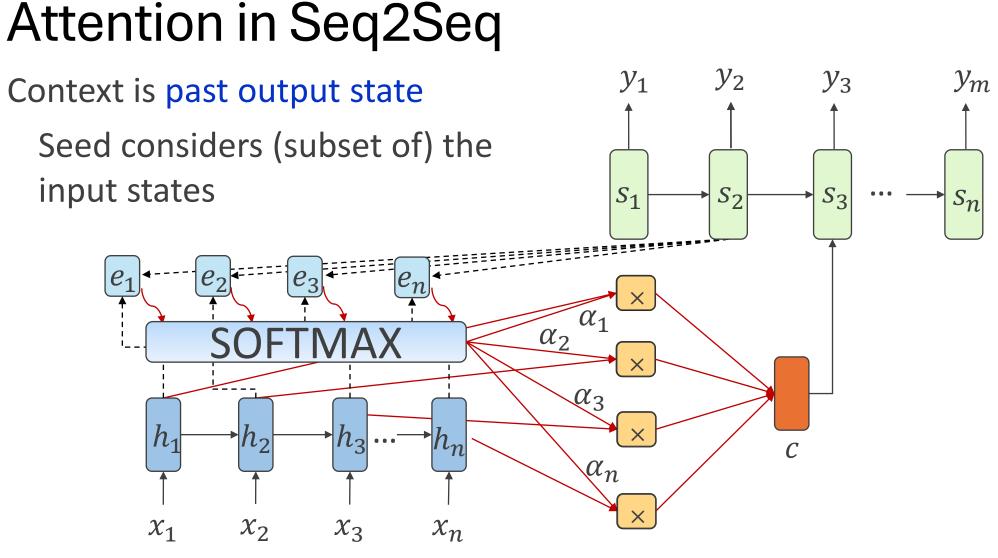
Attention - Equations

- Relevance: $e_i = a(s, h_i)$
- Normalization: $\alpha_i = \frac{\exp(e_i)}{\sum_i \exp(e_j)}$

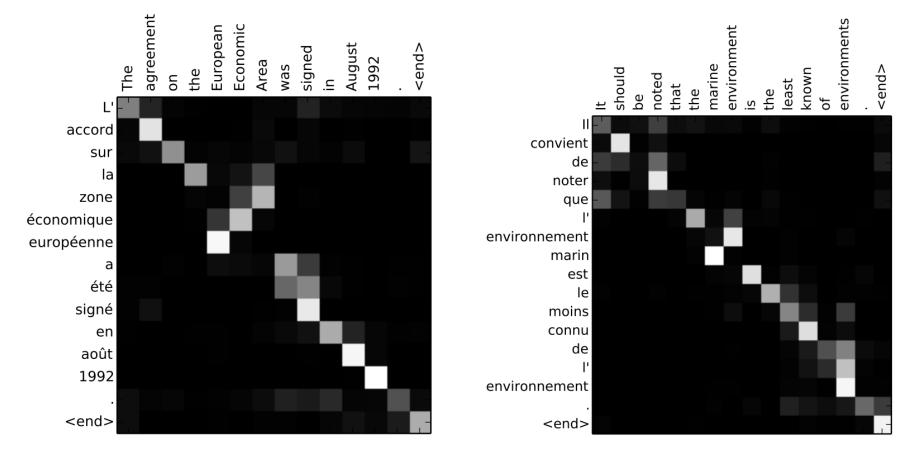
• Aggregation:
$$c = \sum_i \alpha_i h_i$$



Attention module



Learning to Translate with Attention



Bahdanau et al, Show, Neural machine translation by jointly learning to align and translate, ICLR 2015

Transformers

Limitations of the Recurrent Approach

- Sequence-to-sequence RNNs opened the way "difficult" tasks such as machine translation and question answering
- They also popularized the encoder-decoder architecture which as been used in multiple concretizations: e.g., image-to-sequence, sequence-to-image, image-to-imagesequence, ...
- Still RNNs retain the issues seen previously
 - Difficulty in learning long-range dependencies
 - Gradient issues

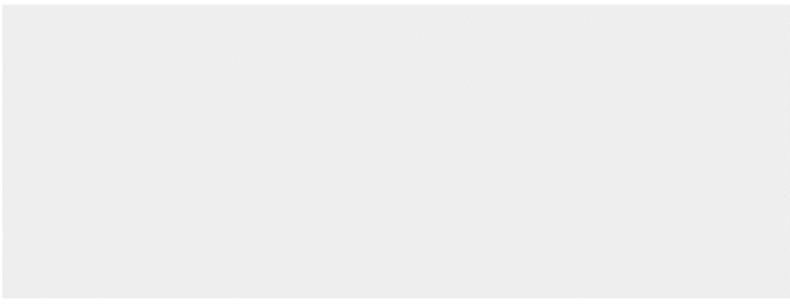
We need a different approach, that does not use recurrence to capture relationships between the elements of the sequence

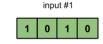
Self Attention – The Intuition

- **Previously** Hope that the input at position i remains in memory up to position j in order to learn the relationship between x_i and x_j
- Now Compute explicitly the relationship between x_i and x_j for all choices of i and j
- To achieve this, we will need to transform each element x_i of the input sequence into three vectors
 - Key
 - Query
 - Value

Self Attention – K,V,Q Generation

Self-attention



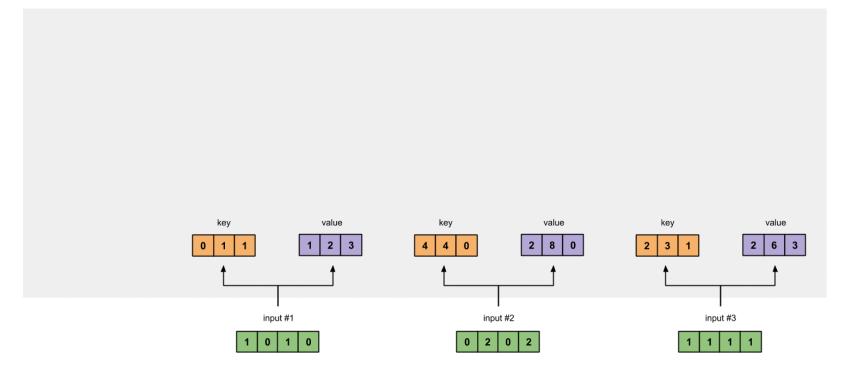


input #3

Figure credit to this article

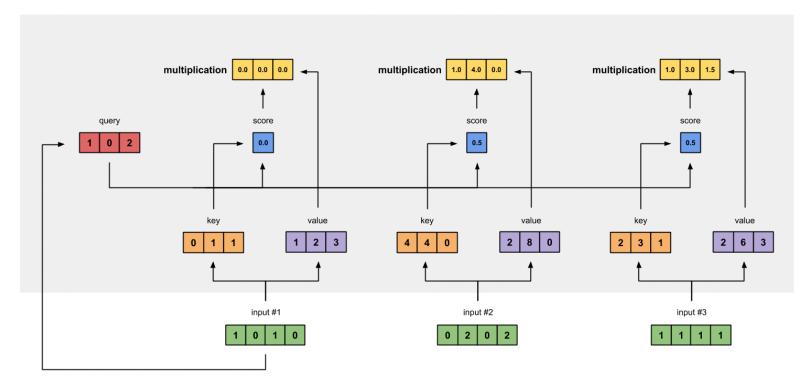
Self Attention – Compute Attention Score

Self-attention



Self Attention – Produce Output

Self-attention



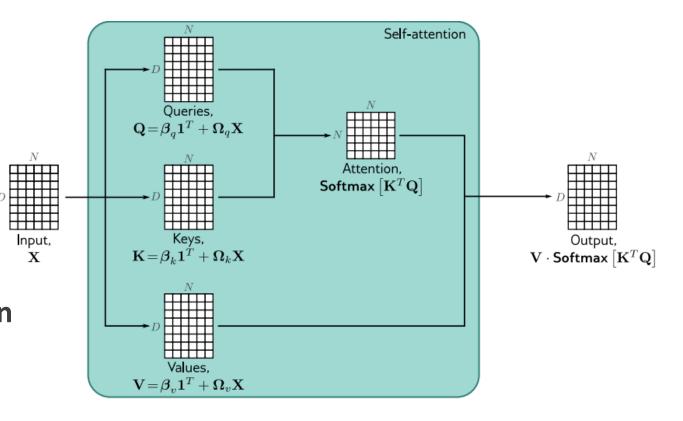
DAVIDE BACCIU - ISPR COURSE

Self Attention

Each element of an input sequence x_i projects into 3 vectors: **query**, **key** and **value**

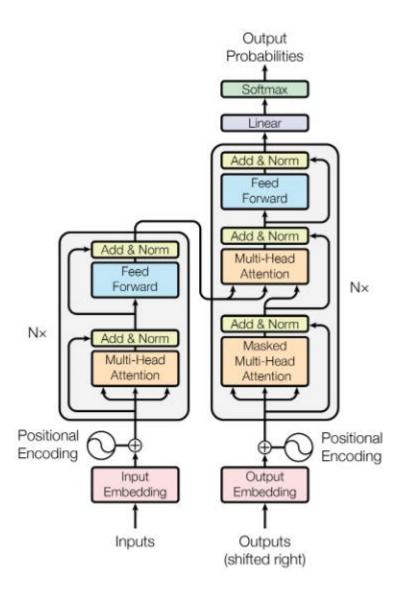
Scaled (multiplicative) self-attention

$$\sum_{j} softmax_{j} \left(\frac{Q_{i} \cdot \mathbf{K}^{T}}{\sqrt{d_{k}}} \right) V_{j}$$

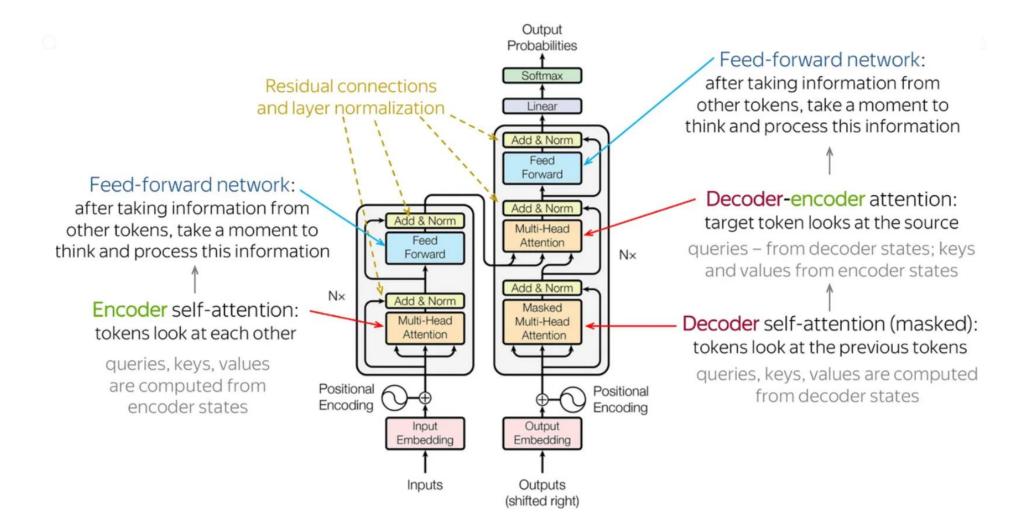


Transformers

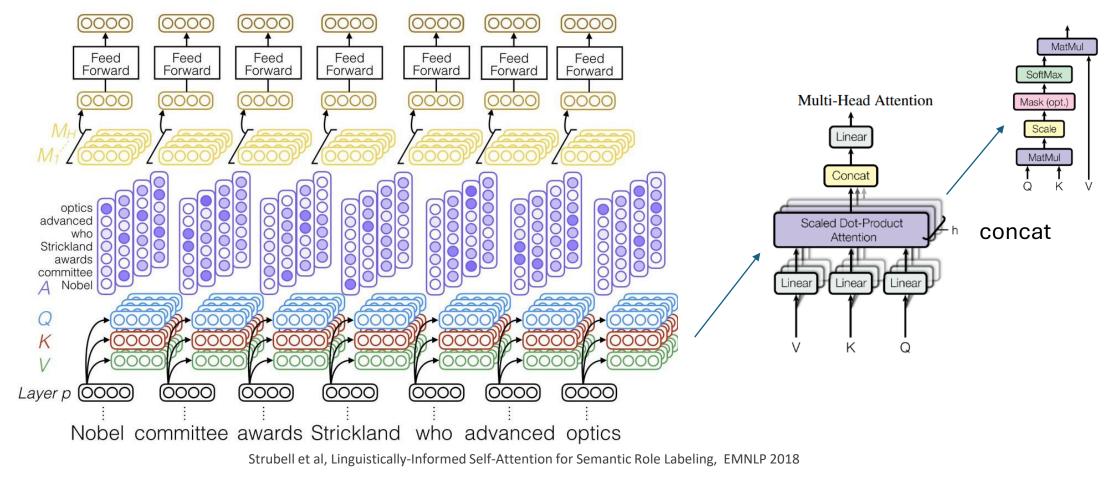
- Encoder-decoder architecture
- First pure attention-based model
- Self-attention is place of recurrence



Transformer Architecture



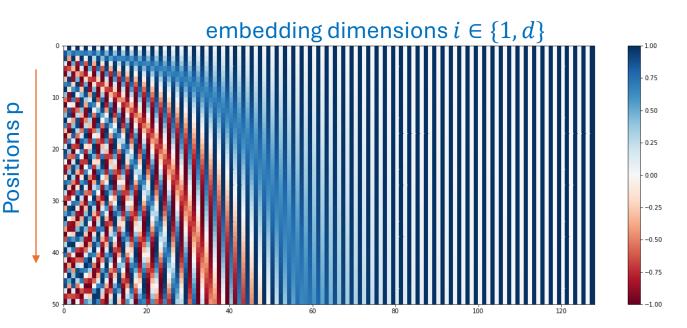
Self Attention – MultiHead



(Absolute) Positional Encoding

- Self-attention is orderindependent
- But in sequences we need ordering information
- Positional embeddings are vectors associating unique values to each position in the sequence
- They are summed to the original embedding: input embedding + positional embedding

Their computation uses sines and cosines functions, for reasons we do not cover here



Encoder Components

- Input embedding Transforms discrete input tokens (e.g. words) into dense vectorial representations
- **Positional encoding** Adds position information to the embeddings
- Multi-head self-attention Updates the input embedding adding information from the context in which a specific input occurs within the sequence
- Add & Norm Residual connection (Add) plus layer normalization to prevents gradient issues
- FeedforwardNN/MLP The bit on nonlinearity we always need (same network applied to each input element, usually)

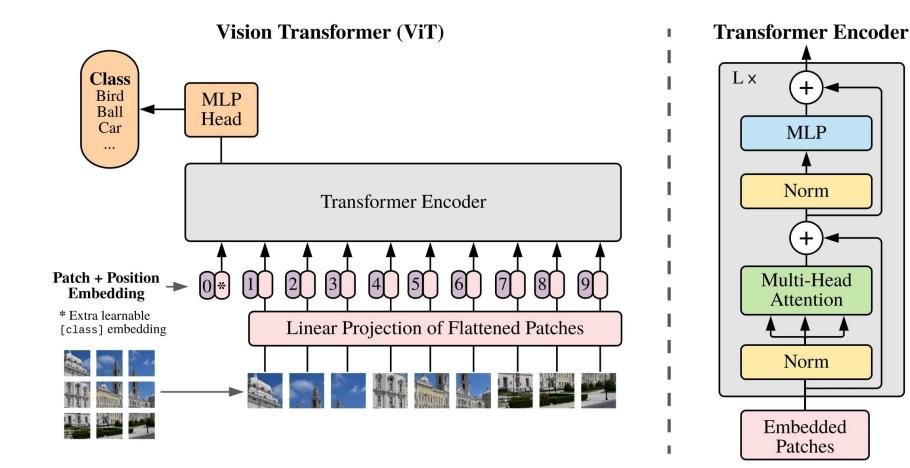
Decoder Components

Same as for the encoder, plus

- Masked Multi-head self attention Like the standard one but we are not allowed to look on the right of the current element (because it was not generated yet)
- Multi-head cross attention Adds the context from the encoder, just like in RNN sequence-to-sequence
- **Output layer** Predict the current output item (typically a softmax for textual sequences)

The Vision Transformer (ViT)

A. Dosovitskiy et al, ICLR 2021



Wrap-up

Take Home Lessons

- Attention as a powerful tool to obtain context dependent neural representations (embeddings) of elements composing my data
 - Self-attention: relationship between one element of the input and all the input elements (including itself)
 - Cross-attention: relationship between each element of the input and an external context
- Encoder-Decoder scheme
 - A general architecture to compose heterogeneous models and data
 - Decoding allows sampling complex predictions from an encoding conditioned distribution
- Transformers as low-inductive bias architectures
 - Need huge amounts of data to generalize

Next Lectures

- The (silently) missing bit: how do we deal with textual sequences, from natural or biological languages?
- Representing textual information
 - Word embeddings
 - Skip-grams
- Tackling textual modelling tasks
 - Masked language modelling
 - Relevant language model architectures
 - Pretraining and foundation models
- Language modelling in healthcare