Numerical Methods and Optimization (year 2016/17)

The program below is a preliminary schedule. For the actual content of the lectures, we refer to the log (*Registro delle lezioni*) on http://unimap.unipi.it/, which will be updated periodically.

COURSE PROGRAM

- Topology and calculus background
 - Sets in the Euclidean space: open sets, closed sets, bounded sets
 - Sequences and limits in the Euclidean space
 - Functions of several variables: continuity, directional derivatives and differentiability, second order derivatives, first and second order Taylor's formulas
- Linear algebra background
 - Normal, unitary, hermitian, positive definite, reducible matrices
 - Schur canonical form
 - Quadratical forms
 - Matrix norms induced by vector norms
- Convex functions, convex sets and optimization problems
 - Convex functions and convex sets: properties and characterizations
 - Classification of optimization problems: local and global minima
 - Properties of convex optimization problems
- Optimality conditions for unconstrained optimization
 - First order necessary and sufficient optimality conditions
 - Second order necessary and sufficient optimality conditions
- Direct and iterative methods for linear systems
 - Matrix factorizations and elementary matrices
 - -LU, QR and LL^{H} factorizations; Gauss, Householder and Cholesky methods
 - Jacobi and Gauss-Seidel methods

- Convergence of iterative methods
- The conjugate gradient method for linear systems
- Brief outline of other method based on Krylov subspaces and Arnoldi factorization.
- Iterative methods for nonlinear systems
 - General notions and conditions for convergence
 - Newton-Raphson method and its convergence; the case of convex functions
- Solution methods for unconstrained optimization
 - Gradients methods with exact and inexact line search
 - Conjugate gradient methods with exact and inexact line search
 - Newton methods and quasi-Newton methods
 - Free derivatives methods
- The least-squares problem
 - The linear problem and the normal equations
 - Solving the linear problem through QR factorization and SVD decomposition
 - Solving the linear problem through the conjugate gradient method
- Iterative methods for computing eigenvalues
 - Bauer-Fike theorem
 - The power method and orthogonal iteration
 - Unitary reduction to tridiagonal form
 - The QR (Francis) method for eigenvalues and its convergence
- Optimality conditions for constrained optimization
 - Tangent cone and first-order feasible direction cone
 - First order optimality conditions
 - Critical cone
 - Second order optimality conditions
- Lagrangian duality
 - Lagrangian relaxation

- Lagrangian dual
- Weak and strong duality theorems
- Solution methods for constrained optimization
 - Frank-Wolfe method
 - Penalty methods
 - Barrier methods
- The fast Fourier transform
 - The Fourier matrix and its properties
 - The algorithm and some applications
- Support Vector Machines (SVMs) for classification problems
 - Linear SVMs
 - Kernel functions
 - Nonlinear SVMs