Exam

Numerical Methods and Optimization course
University of Pisa, 2017-09-11

You may use Matlab, pencil or paper, or a calculator (unless explicitly stated in the exercise).
You may use the quick reference sheet on Matlab’s syntax posted on the web page of the
course.

FEzercise 1. Let

-1 0 3 O 1 0
0 1 0 -3 0 1

A - 0 0 2 0 ’ V1 = 1 702 - 0 (1)
0 0 0 -2 0 1

a. What are the eigenvalues of A?
b. Show that v; and vo are eigenvectors of A.

c. Write a Matlab function v = power_method(A, x0, m) that performs m iterations of the
power method on the matrix A, starting from initial value x0, and returns the approximated
eigenvector v.

d. Report on paper the output of power_method (A, ones(4, 1), m) for the matrix A given
in (1) and the three values m = 200, 201, 202. Does the method converge? Why?

e. Write a Matlab function v = subspace_iteration(A, U0, m) that performs m itera-
tions of the subspace iteration on the matrix A, starting from initial subspace U0, and
returns a basis of the approximated subspace U. (Note that the dimension of the working
subspace should be inferred from the size of U0.)

f. Report on paper the value returned by subspace_iteration(A, [1 2; 2 3; 3 4; 4 5], 200)
on a sample run of the method. Does the method return a matrix whose columns are a
basis of span(vy,va)?



Exercise 2. Consider the following constrained optimization problem:
min —2? — 23 + 4x1 + 629
-1 <0
224+ 13— 622 <0
a. Do global optimal solutions exist? Why?
b. Is it a convex problem? Why?
c. Does the constraints qualification hold in any feasible point? Why?
d. Find all the solutions of the KKT system.
e. Find local minima and global minima.
f. Find the objective function and constraints of the Lagrangian dual problem.

g. Find the optimal solution of the Lagrangian dual problem.

Ezercise 3. Consider the following constrained optimization problem:

min 3:6% + 2:(}% + m% + 2mi — T1T4 — Xox3 — 3T9x4 — T1 — 2x2 + 3x3 + 414
41 4+ 3xo + 223 + 14 < 20
2x1 + 3z + 4xs + dxq < 40
x>0

a. Is it a convex problem? Why?

b. Do global minima exist? Why?

c. Is the global minimum unique? Why?

d. Solve the problem by means of the Frank-Wolfe method with exact line search, tolerance
1075 and starting from the point (1,2,1,2). What is the global minimum? What is the
optimal value? How many iterations are needed?

e. Solve the problem by means of the penalty method with 7 = 0.5, £g = 1 and min(b—Ax) >
—107% as stopping criterion. What is the global minimum? How many iterations are
needed?

Hint: at each iteration use the fminunc function with the following options:
options = optimoptions(’fminunc’,’Grad0bj’,’on’,...
’Algorithm’,’quasi-newton’,’Display’,’off’).

f. Solve the problem by means of the logarithmic barrier method with 7 = 0.5, ¢g = 1,

tolerance 107% and starting from the point (1,2,1,2). What is the global minimum?
How many iterations are needed?

Hint: at each iteration use the fminunc function with the same options as in e).



Solutions
FExercise 1.

a. A is block triangular, so its eigenvalues are its diagonal elements —1,1,2, —2.

b. One can compute directly

2 0
0 —2

Av1 = 9 = 21)1, A?)Q = 0 = —21)2,
0 —2

so v1 and v are eigenvectors of eigenvalues 2 and —2, respectively.

function v = power_method(A, x0, k)

v = x0;
for i = 1:k
v = Axv;

v = v / norm(v);
end

>> power_method(A, ones(4, 1), 200)
ans =

0.5000

0.5000

0.5000

0.5000
>> power_method (A, ones(4, 1), 201)
ans =

0.5000

-0.5000

0.5000

-0.5000
>> power_method (A, ones(4, 1), 202)
ans

The method does not converge — it oscillates between the two values

1/2 1/2
2 -1/
2] ¢ 12 |
1/2 ~1/2



asymptotically. This happens because there is no single eigenvalue with maximum modulus,
but there is a tie (2 and —2). So the conditions for the convergence theorem are not
satisfied.

function U = subspace_iteration(A, UO, m)

U = U0;
for i = 1:m
U = A*U;

[U, "1 = qr(U, 0);
end

>> subspace_iteration(A, [1 2; 2 3; 3 4; 4 5], 200)
ans =

-0.4243 0.5657

-0.5657 -0.4243

-0.4243 0.5657

-0.5657 -0.4243

The two columns are linearly independent and they are both obtained as linear combinations
of v; and vy (i.e., —0.4243v; — 0.5657vy and 0.5657v; — 0.4243v3); so the columns of the
matrix U returned by the method form indeed a basis of span(vy, v2).



FExercise 2.

a. Yes, the objective function is continuous and the feasible region is closed and bounded
(Weierstrass Theorem).

b. No, the objective function is not convex.
c. Yes, the Slater constraints qualification holds.

d. The solutions of the KKT system are:

z=(0,0) A= (4,1)
2 =(0,3) \=(4,0)
x=(2,3) A=(0,0)
x=(0,6) A=(4,1)
z=(3,3) A=(0,1/3)

e. The global minima are (0,0) and (0, 6).

f. The Lagrangian dual problem is

{ max @(A)

A>0
where
— 00 f0< A <1,A >0
— 0 if o= 1,01 >0\ #4
e(A) =140 if Ao=1,0\ =4
(A —4)°

———— —9(X—1) if A 1,0 >
4()\2_1) 9(2 ) 1 2 > 71_0

g. The optimal solution of the dual is A = (4,1).
Ezercise 3.

a. Yes, the hessian matrix of the objective function f is

6 0 0 -1
0 4 -1 -3
0o -1 2 0
-1 -3 0 4

Q=

The eigenvalues of @ are 0.5522, 2.2358, 5.7642, 7.4478 hence f is strongly convex.
b. Yes, f is strongly convex and the feasible region is closed and convex.
c. Yes, f is strongly convex and the feasible region is closed and convex.
d. After 10 iterations the algorithm finds the approximated global minimum
x = (0.1667,0.5000,0,0)

with value —0.5833.



e. After 21 iterations the algorithm finds the approximated global minimum

x = (0.1667,0.5000, 0.0000, 0.0000).

f. After 23 iterations the algorithm finds the approximated global minimum

x = (0.1677,0.5008,0.0000, 0.0001).



