Section outline

  • Lectures take place in presence and online on MS Teams(Only for PhD students or master students with a justified reason for remote attendance.)

     

    For each lecture are reported the book chapters/papers to be studied: while some of them are mandatory (i.e., most book chapters and surveys) others are suggested readings. 

     
      Date Topic   Slides   Materials
     
     1

     


     
     Introduction to Complex Network Analysis


     Slides
     Recordings 

     
     Reading:
     Chapter 1, 2 of Kleinberg's book and Chapter 1 of Barabasi's book.

     
     2

       
     Graphs and networks. Basic measures


     Slides
     Notebook
     Recordings 1
     Recordings 2

     
     Reading: Chapter 2 of Barabasi's book.

     
     3

     

     
     
     Random networks


     Slides
     Notebook
     Recordings

     Reading: Chapter 3 of Barabasi's book.


     
     4

       
     
     It's a small world!


     Slides
     Notebook
     Recordings


     Reading: Chapter 20 of Kleinberg’s book.
     
     Papers:
     Milgram's 6 degrees paper. (suggested)
     Watts-Strogatz's Small World paper. (suggested)

     
     5



     
     Scale-free networks  Slides
     Notebook
     Recordings
     
     Reading: Chapters 4 & 5 of Barabasi's book
     
     Papers:
     Barabasi-Albert Preferential Attachment model. (suggested)

     
     6

     


     
     Centrality & Assortative Mixing


     Slides
     Notebook


     Reading: Chapter 3 & 4 of Kleinberg's book

     
     7

     


     
     Tie Strength & Resilience


     Slides
     Notebook


     Reading: Chapter 8 of Barabasi's book and Chapter 3 of Kleinberg's book

     8    High-order network analysis  Slides
     Notebook
      Papers:
      The why, how, and when of representations for complex systems
      Hypernetwork science via high-order hypergraph walks
      Networks beyond pairwise interactions: structure and dynamics (suggested)
      Hypernetwork Science: From Multidimensional Networks to Computational Topology (suggested)
     9    Exercise for the 1st midterm     
     
     10    Gephi & Cytoscape Tutorial  

     11    Community Discovery
     Slides
     Notebook

     Reading: Chapter 9 of Barabasi's book

     Survey: 
     Community Detection in Graphs (suggested)
     
     Papers:
     Algorithm specific papers as reported in the slides (suggested)
     12    1st MidTerm 

     
     13    Dynamic Of Networks  Slides
     Notebook
     
     Survey: 
     Temporal Networks

     Papers:
     Stream graphs and link streams for the modeling of interactions over time (suggested)

     
      14

       Dynamic Community Discovery  
     Slides
     Notebook
      
     
     Papers:
     Challenges in community discovery on temporal networks
     
     Survey: 
     
    Community Discovery in Dynamic Networks: a Survey (appendix not needed)

     
     15    Link Prediction  
     Slides
     Notebook
     
      Survey: 
     The link‐prediction problem for social networks.
     
     16

       Diffusion: Decision-based models
     Slides
     Notebook
     
     Reading: 
    Chapter 19 of Kleinberg's book
     

     Papers: 
     Threshold models of collective behavior (suggested)
     
     Book:
     Rogers, E. M. “Diffusion of innovations” (suggested)

      17  


     Diffusion: Epidemics  Slides
     Notebook
     Reading: Chapter 21 of Kleinberg's book and Chapter 10 of Barabasi's book
     18    
    Diffusion: Opinion Dynamics

     Slides
     Notebook
      
    Papers:
     Opinion dynamics: models, extensions and external effects.
     Algorithmic bias amplifies opinion fragmentation and polarization: A bounded confidence model (suggested) 

     
     19

     
     Exercise for the 2nd midterm 

       
     20  
     Case Studies

       
     21    2nd Midterm