Section outline
-
Bibliographic References
- Scott Krigg, Interest Point Detector and Feature Descriptor Survey, Computer Vision Metrics, pp 217-282, Open Access Chapter
- Tinne Tuytelaars and Krystian Mikolajczyk, Local Invariant Feature Detectors: A Survey, Foundations and Trends in Computer Graphics and Vision, Vol. 3, No. 3 (2007) 177–2, Online Version
- Lawrence R. Rabiner:a tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 1989, pages 257-286, Online Version
- Charles Sutton and Andrew McCallum, An Introduction to Conditional Random Fields, Arxiv
- Sebastian Nowozin and Christoph H. Lampert, Structured Learning and Prediction, Foundations and Trends in Computer Graphics and Vision, Online Version
- Philipp Krahenbuhl, Vladlen Koltun, Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, Proc.of NIPS 2011, Arxiv
- Geoffrey Hinton, A Practical Guide to Training Restricted Boltzmann Machines, Technical Report 2010-003, University of Toronto, 2010
- D. Blei, A. Y. Ng, M. I. Jordan. Latent Dirichlet Allocation. Journal of Machine Learning Research, 2003
- D. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012, Free Online Version
- G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual Categorization with Bags of Keypoints. Workshop on Statistical Learning in Computer Vision. ECCV 2004, Free Online Version
- Y. LeCun, B. Boser, J.
S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel.
Handwritten digit recognition with a back-propagation network, Advances in Neural Information Processing
Systems,
NIPS, 1989 - A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, NIPS, 2012
- S. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition, ICLR 2015, Free Online Version
- C. Szegedy et al, Going Deeper with Convolutions, CVPR 2015, Free Online Version
- K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. CVPR 2016, Free Online Version
- V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning, Arxiv
- S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2013, Arxiv
- M.D. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013, Arxiv
- G.E. Hinton, R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.Science 313.5786 (2006): 504-507, Free Online Version
- G.E. Hinton, R. R. Salakhutdinov. Deep Boltzmann Machines. AISTATS 2009, Free online version.
- R. R. Salakhutdinov. Learning Deep Generative Models, Annual Review of Statistics and Its Application, 2015, Free Online Version
- Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol. 35(8) (2013): 1798-1828, Arxiv.
- G. Alain, Y. Bengio. What Regularized Auto-Encoders Learn from the Data-Generating Distribution, JMLR, 2014.
- Y. Bengio, P. Simard and P. Frasconi, Learning long-term dependencies with gradient descent is difficult. TNN, 1994, Free Online Version
- S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation, 1997, Free Online Version
- K. Greff et al, LSTM: A Search Space Odyssey, TNNLS 2016, Arxiv
- C. Kyunghyun
et al, Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation, EMNLP 2014, Arxiv
- N. Srivastava et al, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JLMR 2014
- Bahdanau et al, Neural machine translation
by jointly learning to align and translate, ICLR 2015, Arxiv
- Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015, Arxiv
- Koutník et al, A Clockwork RNN, ICML 2014, Arxiv
- Krueger, Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activation, ICLR 2018, Arxiv
- Sukhbaatar et al, End-to-end Memory Networks, NIPS 2015, Arxiv
- A. Graves et al, Neural Turing Machines, Arxiv
- A.Graves, Adaptive Computation Time for Recurrent Neural Networks, Arxiv
- A. Vaswan et al, Attention Is All You Need, NIPS 2017, Arxiv
- A. van der Oord et al., Pixel Recurrent Neural Networks, 2016, Arxiv
- C. Doersch, A Tutorial on Variational Autoencoders, 2016, Arxiv
- Ian Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks, 2016, Arxiv
- Arjovsky et al, Wasserstein GAN, 2017, Arxiv
- T. White, Sampling Generative Network, NIPS 2016, Arxiv
- Scott Krigg, Interest Point Detector and Feature Descriptor Survey, Computer Vision Metrics, pp 217-282, Open Access Chapter