Section outline
-
- Scott Krigg, Interest Point Detector and Feature Descriptor Survey, Computer Vision Metrics, pp 217-282, Open Access Chapter
- Tinne Tuytelaars and Krystian Mikolajczyk, Local Invariant Feature Detectors: A Survey, Foundations and Trends in Computer Graphics and Vision, Vol. 3, No. 3 (2007) 177–2, Online Version
- C. Glymour, Kun Zhang and P. Spirtes, Review of Causal Discovery Methods Based on Graphical Models Front. Genet. 2019, Online version
- Bacciu, D., Etchells, T. A., Lisboa, P. J., & Whittaker, J. (2013). Efficient identification of independence networks using mutual information. Computational Statistics, 28(2), 621-646, Online version
- Tsamardinos, I., Brown, L.E. & Aliferis, C.F. The max-min hill-climbing Bayesian network structure learning algorithm. Mach Learn 65, 31–78 (2006), Online version
- Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 1989, pages 257-286, Online Version
- Charles Sutton and Andrew McCallum, An Introduction to Conditional Random Fields, Arxiv
- Sebastian Nowozin and Christoph H. Lampert, Structured Learning and Prediction, Foundations and Trends in Computer Graphics and Vision, Online Version
- Philipp Krahenbuhl, Vladlen Koltun, Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, Proc.of NIPS 2011, Arxiv
- D. Blei, A. Y. Ng, M. I. Jordan. Latent Dirichlet Allocation. Journal of Machine Learning Research, 2003
- D. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012, Free Online Version
- G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual Categorization with Bags of Keypoints. Workshop on Statistical Learning in Computer Vision. ECCV 2004, Free Online Version
- W. M. Darling, A Theoretical and Practical Implementation Tutorial on Topic Modeling and Gibbs Sampling, Lecture notes
- Geoffrey Hinton, A Practical Guide to Training Restricted Boltzmann Machines, Technical Report 2010-003, University of Toronto, 2010
- G.E. Hinton, R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science 313.5786 (2006): 504-507, Free Online Version
- G.E. Hinton, R. R. Salakhutdinov. Deep Boltzmann Machines. AISTATS 2009, Free online version.
-
R. R. Salakhutdinov. Learning Deep Generative Models, Annual Review of Statistics and Its Application, 2015, Free Online Version
- Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol. 35(8) (2013): 1798-1828, Arxiv.
- G. Alain, Y. Bengio. What Regularized Auto-Encoders Learn from the Data-Generating Distribution, JMLR, 2014.
- Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel. Handwritten digit recognition with a back-propagation network, Advances in Neural Information Processing Systems,
NIPS, 1989 - A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, NIPS, 2012
- S. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition, ICLR 2015, Free Online Version
- C. Szegedy et al, Going Deeper with Convolutions, CVPR 2015, Free Online Version
- K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. CVPR 2016, Free Online Version
- V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning, Arxiv
- S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2013, Arxiv
- M.D. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013, Arxiv
- J. Adebayo et al, Sanity Checks for Saliency Maps, NeurIPS, 2018
- F. Yu et al, Multi-Scale Context Aggregation by Dilated Convolutions, ICLR 2016, Arxiv
- S. Ren et al, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NeurIPS 2015
- Y. Bengio, P. Simard and P. Frasconi, Learning long-term dependencies with gradient descent is difficult. TNN, 1994, Free Online Version
- S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation, 1997, Free Online Version
- K. Greff et al, LSTM: A Search Space Odyssey, TNNLS 2016, Arxiv
- C. Kyunghyun et al, Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, EMNLP 2014, Arxiv
- N. Srivastava et al, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JLMR 2014
- Bahdanau et al, Neural machine translation by jointly learning to align and translate, ICLR 2015, Arxiv
- Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015, Arxiv
- A. Vaswan et al, Attention Is All You Need, NIPS 2017, Arxiv
- A. Dosovitskiy et al, An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021
- A. van der Oord et al., Pixel Recurrent Neural Networks, 2016, Arxiv
- C. Doersch, A Tutorial on Variational Autoencoders, 2016, Arxiv
- Ian Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks, 2016, Arxiv
- Arjovsky et al, Wasserstein GAN, 2017, Arxiv
- T. White, Sampling Generative Network, NIPS 2016, Arxiv
- T. Karras et al, Progressive Growing of GANs for Improved Quality, Stability, and Variation, ICLR 2018, Arxiv
- Jun-Yan Zhu et al, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017 Arxiv
- Alireza Makhzani et al, Adversarial Autoencoders, NIPS 2016, Arxiv
- Ling Yang et al, Diffusion Models: A Comprehensive Survey of Methods and Applications, 2023, Arxiv
- Jascha Sohl-Dickstein et al, Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015, PDF
- Y. Song & S. Ermon, Generative Modeling by Estimating Gradients of the Data Distribution, NeurIPS 2019, PDF
- Jonathan Ho et al, Denoising Diffusion Probabilistic Models, NeurIPS 2020, Arxiv
- P. Dhariwal & A. Nichol, Diffusion Models Beat GANs on Image Synthesis, NeurIPS 2021, PDF
- I. Kobyzev et al Normalizing Flows: An Introduction and Review of Current Methods, Arxiv
- L Dinh et al, Density Estimation using real NVP, ICLR 2017, PDF
- D. Kingma & P. Dhariwal, Glow: Generative flow with invertible 1x1 convolutions, NeurIPS 2018, PDF
- G. Papamakarios et al, Masked Autoregressive Flow for Density Estimation, NeurIPS 2017, PDF
- A. Micheli, Neural Network for Graphs: A Contextual Constructive Approach. IEEE TNN, 2009, Online
- Scarselli et al, The graph neural network model, IEEE TNN, 2009, Online
- Bacciu et al, A Gentle Introduction to Deep Learning for Graphs, Neural Networks, 2020, Arxiv
- Bacciu et al, Generalizing downsampling from regular data to graphs, AAAI, 2023, PDF
- Bacciu et al, Probabilistic Learning on Graphs via Contextual Architectures, 2020, JMLR
- Gravina et al, ANTI-SYMMETRIC DGN: A STABLE ARCHITECTURE FOR DEEP GRAPH NETWORKS, ICLR, 2023, Arxiv
- A. Gravina and D. Bacciu, Deep learning for dynamic graphs: models and benchmarks, 2024, TNNLS
- D. Numeroso et al, Dual Algorithmic Reasoning, ICRL, 2023, Arxiv
- L. Rampášek et al, Recipe for a General, Powerful, Scalable Graph Transformer, NeurIPS 2022, Arxiv
- CJCH Watkins, P Dayan, Q-learning, Machine Learning, 1992, PDF
- Mnih et al,Human-level control through deep reinforcement learning, Nature, 2015, PDF
- Sutton et al, Policy gradient methods for reinforcement learning with function approximation, NIPS, 2000, PDF
- Schulman et al, Trust Region Policy Optimization, ICML, 2015, PDF