Skip to main content
INF - e-learning - Dipartimento di Informatica
You are currently using guest access (Log in)

Intelligent Systems for Pattern Recognition (6 CFU) - Old course - Deprecated page

  1. Home
  2. Courses
  3. Corso di Laurea Magistrale in Informatica (LM-18)
  4. ISPR-6CFU (Until 2021)
  5. Midterms and Projects
  6. Midterm 4 (2021)

Midterm 4 (2021)

Completion requirements

DO NOT SUBMIT THE MIDTERM 4 HERE: DO IT ON THE MOODLE ASSIGNMENT CORRESPONDING TO THE APPELLO YOU ARE INTENDING TO TAKE.

Assignment Rules and Execution

The fourth midterm covers the advanced deep learning models and topics. To pass the midterm you should

  1. prepare a short presentation describing the content of one of the papers referenced below and upload it by the (strict) exam deadline of the Appello of your choice;
  2. give your short presentation before the oral exam.

The midterm presentation MUST take a maximum of 5 minutes and should include a maximum of 5/6 slides, whose content should cover:

  1. A title slide with the paper title and your name
  2. Introduction to the problem in the paper
  3. Model description
  4. Empirical results (a summary or the most interesting one)
  5. A final slide with your personal considerations (novelties, strong points and weaknesses)

Paper list

  • Hierarchical Multiscale RNN - arxiv.org/pdf/1609.01704.pdf
  • Neural Stacks - http://papers.nips.cc/paper/5648-learning-to-transduce-with-unbounded-memory.pdf
  • Neural reasoning – arxiv.org/pdf/1610.07647.pdf
  • Adaptive computation time networks - arxiv.org/pdf/1603.08983.pdf
  • Deep reservoir computing - www.sciencedirect.com/science/article/pii/S0925231217307567
  • Linear memory networks - www.sciencedirect.com/science/article/pii/S0925231221005932
  • Continual learning (progressive memories) - arxiv.org/pdf/1811.00239.pdf
  • Continual learning (elastic weight consolidation) - arxiv.org/pdf/1612.00796.pdf
  • Continual learning (sequential processing tasks) - arxiv.org/pdf/2004.04077.pdf
  • Continual learning (generative replay) - http://papers.nips.cc/paper/6892-continual-learning-with-deep-generative-replay.pdf
  • Continual learning (dataset distillation) - arxiv.org/pdf/2103.15851.pdf
  • Neural distribution learning - openreview.net/pdf?id=HJDBUF5le
  • Wasserstein GAN - arxiv.org/abs/1701.07875v2
  • Cycle GAN - arxiv.org/pdf/1703.10593.pdf
  • Gumbel GAN (learning to generate discrete objects) - arxiv.org/pdf/1611.04051.pdf
  • Creative GANs for art generation - arxiv.org/abs/1706.07068
  • Adversarial Autoencoders - arxiv.org/pdf/1511.05644.pdf
  • Wasserstein Autoencoders - arxiv.org/pdf/1711.01558.pdf
  • Adversarial Autoencoder for music generation - arxiv.org/abs/2001.05494
  • Adversarial Attacks - arxiv.org/pdf/1608.04644.pdf
  • Defences against adversarial attacks – arxiv.org/pdf/1702.04267.pdf
  • Convolutional NN for video processing - arxiv.org/pdf/1711.10305.pdf
  • Deep learning for graphs: Survey - arxiv.org/pdf/1912.12693.pdf
  • Deep learning for graphs: Theoretical - arxiv.org/pdf/1810.00826.pdf
  • Deep learning for graphs: Probabilistic Model - www.jmlr.org/papers/volume21/19-470/19-470.pdf
  • Deep learning for graphs: Molecule Generation - arxiv.org/pdf/2002.12826.pdf
  • Differentiable Pooling in Graph Convolutional Neural Networks – arxiv.org/abs/1806.08804
  • CNN for DNA processing -  dx.doi.org/10.1093%2Fbioinformatics%2Fbtw255
  • Learning Bayesian Networks from COVID-19 data - arxiv.org/pdf/2105.06998.pdf
  • Deep learning for robot grasping – arxiv.org/pdf/1301.3592.pdf
  • Deep reinforcement learning for robotics - arxiv.org/pdf/1504.00702.pdf
  • Deep reinforcement learning (AlphaGo) - www.nature.com/articles/nature16961
  • Deep reinforcement learning with external memory - arxiv.org/pdf/1702.08360.pdf
  • Theoretical properties of Stochastic Gradient Descent – arxiv.org/pdf/1710.11029.pdf
  • Convergence and generalization of Neural Networks - https://arxiv.org/pdf/1806.07572.pdf

◄ Final Projects (2020/2021)
ISPR Midterm 4 & Final Project Delivery - Session 3 (Summer 2021) ►

Blocks

Skip Navigation

Navigation

  • Home

    • Site pages

      • My courses

      • Tags

      • ForumSite news

    • My courses

    • Courses

      • Corso di Laurea Magistrale in Informatica (LM-18)

        • CNS 2025

        • CMCS 2025

        • P2P2425

        • IQC(24-25)

        • ADB 24/25

        • CL 24/25

        • ICT-RA

        • AIF24-25

        • ML 2024

        • CM24

        • SDC 24/25

        • ISPR-6CFU (Until 2021)

          • News

          • Course Information

          • Lectures and Calendar

          • Course Grading and Exams

          • Midterms and Projects

            • AssignmentMidterm 1 (2021)

            • AssignmentMidterm 2 (2021)

            • AssignmentMidterm 3 (2021)

            • AssignmentFinal Projects (2020/2021)

            • AssignmentMidterm 4 (2021)

            • AssignmentISPR Midterm 4 & Final Project Delivery - Sess...

            • AssignmentISPR Midterm 4 & Final Project Delivery - Sess...

            • AssignmentISPR Midterm 4 & Final Project Delivery - Sess...

            • AssignmentISPR Midterm 4 & Final Project Delivery - Sess...

            • AssignmentISPR Midterm 4 & Final Project Delivery - Sess...

            • AssignmentISPR Midterm 4 & Final Project Delivery - Sess...

            • AssignmentFinal Project Delivery - Session 9 (Spring 2022)

          • Past Editions

          • References

      • Corso di Laurea in Informatica (L-31)

      • Corso di Laurea Magistrale in Informatica e Networ...

      • Corso di Laurea Magistrale in Data Science and Bus...

      • Corso di Laurea Magistrale in Informatics for Digi...

      • Corsi erogati dal Dipartimento di Matematica

      • Master di II livello in "Professione formatore in ...

      • Corsi CLIL

      • Altri Corsi

      • Anno Accademico 2013-14

Blocks

You are currently using guest access (Log in)
ISPR-6CFU (Until 2021)
Data retention summary
Get the mobile app